精英家教网 > 高中数学 > 题目详情
10.函数f(x)=-3x在区间[1,2]上的最小值是(  )
A.-9B.-6C.-3D.-$\frac{1}{3}$

分析 由指数函数的单调性可得y=3x在[1,2]递增,则函数f(x)=-3x在区间[1,2]上递减,可得f(2)最小.

解答 解:由指数函数的单调性可得y=3x在[1,2]递增,
则函数f(x)=-3x在区间[1,2]上递减,
即有f(2)取得最小值,且为-9.
故选:A.

点评 本题考查指数函数的单调性及运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=lnx+ax2+(2-2a)x+$\frac{1}{4a}$(a>0),若存在三个不相等的正实数x1,x2,x3,使得$\frac{{f({x_1})}}{x_1}=\frac{{f({x_2})}}{x_2}=\frac{{f({x_3})}}{x_3}$=3成立,则a的取值范围是($\frac{1}{2e}$,$\frac{\sqrt{2}-1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x,y)=(x-y)2+(4+$\sqrt{1-{x^2}}$+$\sqrt{1-\frac{y^2}{9}}$)2,则f(x,y)的最大值为$28+6\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的顶点坐标分别为A(1,1),B(m,1),C(4,5),
(1)若m=5,求cos2A;
(2)若∠ABC为直角,求实数m的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\frac{2}{x}$-3lnx,则$\underset{lim}{△x→0}$$\frac{f(2+△x)-f(2)}{△x}$等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}和单调递减数列{bn}(n∈N*),{bn}通项公式为bn=λn2+a7•n.若a3,a11是方程x2-x-2=0的两根,则实数λ的取值范围是(  )
A.(-∞,-3)B.$({-∞,-\frac{1}{6}})$C.$({-\frac{1}{6},+∞})$D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.判断问题是否是排列问题,并说明理由.
从2,3,5,7,11,13,17,19中任取两个不同的数相除可得多少种不同的结果?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|$\overrightarrow{a}$|=2$\sqrt{3}$,|$\overrightarrow{b}$|=6,$\overrightarrow{a}$•$\overrightarrow{b}$=-18,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ是150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|3x+2>0},B={x|(x+1)(x-3)>0},则A∩B=(  )
A.(-∞,-1)B.$({-1,-\frac{2}{3}})$C.$({-\frac{2}{3},3})$D.(3,+∞)

查看答案和解析>>

同步练习册答案