精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥 中,已知 底面 ,且 的中点, 上,且 .

(1)求证:平面 平面
(2)求证: 平面
(3)求三棱锥 的体积.

【答案】
(1)解: 证明:∵ 底面 底面 ,故

,因此 平面 ,又 平面 ,因此平面 平面


(2)解: 证明:取 的中点 ,连接

,且 ,又 ,故 .又 ,又 .

,且 ,故四边形 为平行四边形,∴ ,又 平面 平面 ,故 平面 .


(3)解: 由 底面 ,∴ 的长就是三棱锥 的高, .又


【解析】(1)根据已知条件的线面垂直的性质定理可得出P A ⊥ C D ,再结合线面垂直的判定定理可得到 C D ⊥ 平面 P A D 进而得到平面P A D ⊥ 平面 PDC.(2)由题意作出辅助线根据已知可得 M E / / C D ,再结合已知条件得出ME=进而可得出 C D / / A B借助边之间的长度关系可得 M E / / A N ,且 M E = A N,得出四边形 M E A N 为平行四边形,利用边的平行关系结合线面平行的判定定理得出 M N / / 平面 P A D 。(3)由题意利用转换三棱锥的顶点把三角形BDC做为底面由已知P A = 1,借助三棱锥的体积公式代入数值求出结果。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三棱锥A﹣BCD的两条棱AB=CD=6,其余各棱长均为5,求三棱锥的内切球半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,已知(b﹣2a)cosC+ccosB=0
(1)求角C;
(2)若 ,求边长a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆Γ: =1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.
(1)若P在第一象限,且|OP|= ,求P的坐标;
(2)设P( ),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;
(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且 ,求直线AQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 .
(1)求曲线 的参数方程;
(2)在曲线 上任取一点 ,求的 最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .
(1)若函数 的图象在点 处的切线平行于直线 ,求 的值;
(2)讨论函数 在定义域上的单调性;
(3)若函数 上的最小值为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若曲线 处的切线方程为 ,求 的极值;
(2)若 ,是否存在 ,使 的极值大于零?若存在,求出 的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若曲线f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是(
A.(e,e2
B.(e,
C.(1,e2
D.[1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对函数f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),则称(x0 , f(x0))与(﹣x0 , f(﹣x0))为函数图象的一组奇对称点.若f(x)=ex﹣a(e为自然数的底数)存在奇对称点,则实数a的取值范围是(
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)

查看答案和解析>>

同步练习册答案