精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
1
2
AA1,D是棱AA1的中点.
(Ⅰ)证明:DC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比
(Ⅲ)画出平面BDC1与平面ABC的交线.
考点:直线与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(Ⅰ)由题设知BC⊥CC1,BC⊥AC,从而BC⊥平面ACC1A1,进而DC1⊥BC,由此能证明平面BDC1⊥平面BDC.
(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1,
由题意得V1=
1
3
×
1+2
2
×1×1=
1
2
,由此能示出平面BDC1分此棱柱所得两部分的体积的比.
(Ⅲ)延长C1D、CA,交于点E,连结BE,直线BE就是平面BDC1与平面ABC的交线.
解答: (Ⅰ)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,
∴BC⊥平面ACC1A1
又DC1?平面ACC1A1,∴DC1⊥BC,
由题设知∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,即DC1⊥DC,
又DC∩BC=C,∴DC1⊥平面BDC,又DC1?平面BDC1
故平面BDC1⊥平面BDC.
(Ⅱ)解:设棱锥B-DACC1的体积为V1,AC=1,
由题意得V1=
1
3
×
1+2
2
×1×1=
1
2

又三棱锥ABC-A1B1C1的体积V=1,
∴(V-V1):V1=1:1,
∴平面BDC1分此棱柱所得两部分的体积的比为1:1.
(Ⅲ)解:延长C1D、CA,交于点E,连结BE,
直线BE就是平面BDC1与平面ABC的交线.
点评:本题考查直线与平面垂直的证明,考查面棱柱得到两部分体积的比的求法,考查平面与平面的交线的画法.解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
ex
+m,m∈R.
(Ⅰ)当m=0时,求f(x)的单调区间、最大值;
(Ⅱ)设函数g(x)=|lnx|-f(x),若存在实数x0使得g(x0)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(3,4),
b
=(5,12)
(1)求
a
b

(2)求|
a
|和|
b
|以及
a
b
所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-2-lnx(a∈R).
(Ⅰ)若函数f(x)在点(e,f(e))(其中e为自然对数的底数)处的切线与x轴平行,求a的值;
(Ⅱ)当a∈R时,求函数y=f(x)在区间[1,2]上的最小值;
(Ⅲ)当x>0时,求证:f(x)-ax+ex>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-2m-2)xm-1为偶函数,且在区间(0,+∞)上是单调递减函数,
(1)求函数f(x)的解析式;
(2)讨论函数F(x)=a
f(x)
-
b
xf(x)
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(
1
2
ax,a为常数,且函数的图象过点(-1,2)
(1)求a的值
(2)求f(x)的反函数h(x);
(3)若g(x)=4-x-2且g(x)=f(x),求满足条件的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系.直线l的参数方程是:
x=
2
2
t+m
y=
2
2
t.
(t是参数)
(1)求曲线C和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,且|AB|=
14
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)求a的取值范围;
(2)证明:f′(
x1x2
)<0(f′(x)为函数f(x)的导函数);
(3)设g(x)=3ax2-ax+2+a,若f(x)+e-x≥g(x)对x∈R恒成立,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2,g(x)=f(x)+f′(x),(a>0)
(1)求函数f(x)的极大值和极小值;
(2)若x∈[0,2],函数g(x)在x=0处取得最大值,在x=2处取得最小值,求a的范围.

查看答案和解析>>

同步练习册答案