精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin$\frac{C}{2}=\frac{\sqrt{10}}{4}$,若△ABC的面积为$\frac{3\sqrt{15}}{4}$,且$si{n}^{2}A+si{n}^{2}B=\frac{13}{16}si{n}^{2}C$,则c的值为(  )
A.2$\sqrt{2}$B.3C.2$\sqrt{3}$D.4

分析 由题意得cosC=1-2sin2$\frac{C}{2}$=1-2×$\frac{10}{16}$=-$\frac{1}{4}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{15}}{4}$,
由△ABC的面积为$\frac{3\sqrt{15}}{4}$,得ab=6
由$si{n}^{2}A+si{n}^{2}B=\frac{13}{16}si{n}^{2}C$,得${a}^{2}+{b}^{2}=\frac{13}{16}{c}^{2}$
由余弦定理得c2=a2+b2-2abcosC,可得c2=16,即可

解答 解:由题意得cosC=1-2sin2$\frac{C}{2}$=1-2×$\frac{10}{16}$=-$\frac{1}{4}$
⇒sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{15}}{4}$,
∵${S}_{△ABC}=\frac{1}{2}absinC$=$\frac{3\sqrt{15}}{4}$,∴ab=6
∵$si{n}^{2}A+si{n}^{2}B=\frac{13}{16}si{n}^{2}C$,则${a}^{2}+{b}^{2}=\frac{13}{16}{c}^{2}$
由余弦定理得c2=a2+b2-2abcosC
可得c2=16,∴c=4
故选:D

点评 本题考查了三角恒等变形,余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知O为△ABC的外心,若AC=1,$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且x+2y=1,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.lg$\frac{5}{3}$+lg6=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-alnx+x-$\frac{a}{x}$(a为常数)有两个不同的极值点.
(1)求实数a的取值范围;
(2)记f(x)的两个不同的极值点分别为x1,x2,若不等式f(x1)+f(x2)>λ(x1+x22恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-2sin($\frac{π}{12}$t+$\frac{π}{3}$),t∈[0,24).该实验室这一天的最大温差为4℃.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(4,-6),$\overrightarrow{b}$=(9,m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的值为(  )
A.-$\frac{54}{4}$B.-6C.6D.$\frac{54}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲、乙两选手比赛,设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,若采用3局2胜制,则甲获胜的概率是(  )
A.0.648B.0.6C.0.432D.0.216

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系中,已知向量$\overrightarrow{m}$=(1,0),$\overrightarrow{n}$=(0,1),定点A的坐标为(1,2),点M坐标为(4,5),曲线C={N|$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ,0≤θ≤2π},区域U={P|r≤$\overrightarrow{|MP|}$≤R,0<r<R},曲线C与区域U的交集为两段分离的曲线,则(  )
A.3$\sqrt{2}$-1<r<R<3$\sqrt{2}$+1B.3$\sqrt{2}$-1<r<3$\sqrt{2}$+1≤RC.r≤3$\sqrt{2}$-1<R<3$\sqrt{2}$+1D.r<3$\sqrt{2}$-1<R<3$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C的圆心在直线3x-y=0上,半径为1且与直线4x-3y=0相切,则圆C的标准方程是(x-1)2+(y-3)2=1或(x+1)2+(y+3)2=1.

查看答案和解析>>

同步练习册答案