精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系中,已知向量$\overrightarrow{m}$=(1,0),$\overrightarrow{n}$=(0,1),定点A的坐标为(1,2),点M坐标为(4,5),曲线C={N|$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ,0≤θ≤2π},区域U={P|r≤$\overrightarrow{|MP|}$≤R,0<r<R},曲线C与区域U的交集为两段分离的曲线,则(  )
A.3$\sqrt{2}$-1<r<R<3$\sqrt{2}$+1B.3$\sqrt{2}$-1<r<3$\sqrt{2}$+1≤RC.r≤3$\sqrt{2}$-1<R<3$\sqrt{2}$+1D.r<3$\sqrt{2}$-1<R<3$\sqrt{2}$+1

分析 由题意求出N的轨迹为以A(1,2)为圆心,以1为半径的圆,区域U为圆环,画出图形,数形结合求得答案.

解答 解:∵$\overrightarrow{m}$=(1,0),$\overrightarrow{n}$=(0,1),
∴$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ=(cosθ,0)+(0,sinθ)
=(cosθ,sinθ),
设N(x,y),则$\overrightarrow{AN}=(x-1,y-2)=(cosθ,sinθ)$,
∴$\left\{\begin{array}{l}{x-1=cosθ}\\{y-2=sinθ}\end{array}\right.$,即(x-1)2+(y-2)2=1.
∴曲线C={N|$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ,0≤θ≤2π}表示以A(1,2)为圆心,以1为半径的圆.
又M(4,5),如图,|MB|=|MA|-1
=$\sqrt{(4-1)^{2}+(5-2)^{2}}=3\sqrt{2}$-1,
|MC|=|MA|+1=$\sqrt{(4-1)^{2}+(5-2)^{2}}=3\sqrt{2}+1$.
要使区域U={P|r≤$\overrightarrow{|MP|}$≤R,0<r<R},
且曲线C与区域U的交集为两段分离的曲线,
则$3\sqrt{2}-1$<r<R<$3\sqrt{2}+1$.
故选:A.

点评 本题考查曲线与方程,考查数形结合的解题思想方法与数学转化思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10…,第n个三角形数为$\frac{{n}^{2}+n}{2}$,记第n个k边行数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式
三角形数;N=(n,3)=$\frac{1}{2}$n2$+\frac{1}{2}$n,正方形数:N=(n,4)=$\frac{2}{2}$n2+0n,五边形数:N=(n,5)=$\frac{3}{2}$n2$-\frac{1}{2}$n,六边形数;N(n,6)=$\frac{4}{2}$n2$-\frac{2}{2}$n…由此推测N(8,8)=176.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin$\frac{C}{2}=\frac{\sqrt{10}}{4}$,若△ABC的面积为$\frac{3\sqrt{15}}{4}$,且$si{n}^{2}A+si{n}^{2}B=\frac{13}{16}si{n}^{2}C$,则c的值为(  )
A.2$\sqrt{2}$B.3C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.葫芦岛市交通局为了解机动车驾驶员对交通法规的知晓情况,对渤海、丰乐、安宁、天正四个社区做分层抽样调查.其中渤海社区有驾驶员96人,若在渤海、丰乐、安宁、天正四个社区抽取驾驶员的人数分别为12,21,25,43,则丰乐、安宁、天正三个社区驾驶员人数是多少(  )
A.101B.808C.712D.89

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.锐角△ABC中,角A,B,C的对边分别是a,b,c,若tanC=2,则$\frac{sinA}{sinB}$的取值范围是(  )
A.($\frac{{\sqrt{2}}}{2},\sqrt{2}$)B.($\frac{{\sqrt{3}}}{3},\sqrt{3}$)C.(0,$\sqrt{5}$)D.($\frac{1}{2},2$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=log2$\sqrt{-{x^2}+2x+3}$,则f(x)的定义域是(-1,3);最大值是2;f(x)的单调增区间是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知变量x与y正相关,且由观测数据算得样本平均数$\overline{x}$=2,$\overrightarrow{y}$=3,则由该观测的数据算得的线性回归方程可能是(  )
A.$\widehat{y}$=0.4x+2.1B.$\widehat{y}$=2x-1C.$\widehat{y}$=-2x+1D.$\widehat{y}$=0.4x+2.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}=\overrightarrow{b}$;
②若$\overrightarrow{a}=\overrightarrow{b}$,则$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{0}$;
③若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则$\overrightarrow{a}$与$\overrightarrow{b}$方向相同;
④在边长为1的等边三角形ABC中,BC的中点为D,则向量$\overrightarrow{AD}$的模为1.正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案