| A. | 3$\sqrt{2}$-1<r<R<3$\sqrt{2}$+1 | B. | 3$\sqrt{2}$-1<r<3$\sqrt{2}$+1≤R | C. | r≤3$\sqrt{2}$-1<R<3$\sqrt{2}$+1 | D. | r<3$\sqrt{2}$-1<R<3$\sqrt{2}$+1 |
分析 由题意求出N的轨迹为以A(1,2)为圆心,以1为半径的圆,区域U为圆环,画出图形,数形结合求得答案.
解答 解:∵$\overrightarrow{m}$=(1,0),$\overrightarrow{n}$=(0,1),![]()
∴$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ=(cosθ,0)+(0,sinθ)
=(cosθ,sinθ),
设N(x,y),则$\overrightarrow{AN}=(x-1,y-2)=(cosθ,sinθ)$,
∴$\left\{\begin{array}{l}{x-1=cosθ}\\{y-2=sinθ}\end{array}\right.$,即(x-1)2+(y-2)2=1.
∴曲线C={N|$\overrightarrow{AN}$=$\overrightarrow{m}$cosθ+$\overrightarrow{n}$sinθ,0≤θ≤2π}表示以A(1,2)为圆心,以1为半径的圆.
又M(4,5),如图,|MB|=|MA|-1
=$\sqrt{(4-1)^{2}+(5-2)^{2}}=3\sqrt{2}$-1,
|MC|=|MA|+1=$\sqrt{(4-1)^{2}+(5-2)^{2}}=3\sqrt{2}+1$.
要使区域U={P|r≤$\overrightarrow{|MP|}$≤R,0<r<R},
且曲线C与区域U的交集为两段分离的曲线,
则$3\sqrt{2}-1$<r<R<$3\sqrt{2}+1$.
故选:A.
点评 本题考查曲线与方程,考查数形结合的解题思想方法与数学转化思想方法,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3 | C. | 2$\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 101 | B. | 808 | C. | 712 | D. | 89 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{{\sqrt{2}}}{2},\sqrt{2}$) | B. | ($\frac{{\sqrt{3}}}{3},\sqrt{3}$) | C. | (0,$\sqrt{5}$) | D. | ($\frac{1}{2},2$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\widehat{y}$=0.4x+2.1 | B. | $\widehat{y}$=2x-1 | C. | $\widehat{y}$=-2x+1 | D. | $\widehat{y}$=0.4x+2.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com