精英家教网 > 高中数学 > 题目详情
10.直线x+y=1与双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1  (a>0,b>0)交于M、N两点,若以M、N两点为直径的圆经过坐标原点O.
(1)求$\frac{1}{{a}^{2}}-\frac{1}{{b}^{2}}$的值;
(2)若0<a≤$\frac{1}{2}$,求双曲线离心率e的取值范围.

分析 (1)联立方程,利用韦达定理,结合x1x2+y1y2=0,即可求$\frac{1}{{a}^{2}}-\frac{1}{{b}^{2}}$的值;
(2)若0<a≤$\frac{1}{2}$,求双曲线离心率e的取值范围.

解答 解:(1)由 $\left\{{\begin{array}{l}{x+y=1}\\{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1}\end{array}}\right.$得:(b2-a2)x2+2a2x-a2-a2b2=0(b2≠a2),
设M(x1,y1),N(x2,y2),则x1+x2=$\frac{{2{a^2}}}{{{a^2}-{b^2}}}$,x1x2=$\frac{{{a^2}+{a^2}{b^2}}}{{{a^2}-{b^2}}}$,
由题意得:x1x2+y1y2=0,
x1 x2+(1-x1)(1-x2)=1-(x1+x2)+2x1x2=1+$\frac{{2{a^2}}}{{{b^2}-{a^2}}}$-$\frac{{2({a^2}+{a^2}{b^2})}}{{{b^2}-{a^2}}}$=0,
∴b2-a2-2a2b2=0,∴$\frac{1}{a^2}$-$\frac{1}{b^2}$=2,
(2)∵0<a≤$\frac{1}{2}$即0<2a≤1,$\frac{1}{2}$≤1-2a2<,1<$\frac{1}{{1-2{a^2}}}$≤2,
又∵b2=$\frac{a^2}{{1-2{a^2}}}$,e2=$\frac{{{a^2}+{b^2}}}{a^2}$=1+$\frac{1}{{1-2{a^2}}}$,∴e∈($\sqrt{2}$,$\sqrt{3}$].

点评 本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设a<b<0,则下列不等式中恒成立的是(  )
A.a2<b2B.$\frac{1}{a}>\frac{1}{b}$C.ab<b2D.3a<4b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=lg$\frac{1+ax}{1-2x}({a>0})$是奇函数,则函数$g(x)={log_{\frac{1}{a}}}({{x^2}-6x+5})$的单调递减区间是(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.11月11日在某购物网站消费不超过10000元的2000名网购者中有女士1100名,男士900名.该网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析得到下表(消费金额:元)
女士消费情况:
消费金额(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人数1025      35     35x
男士消费情况:
消费金额(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人数1530      25y3
(Ⅰ)计算x,y的值,在抽出的200名且消费金额在[8000,10000](单位:元)的网购者中随机选出2名发放网购红包,求选出的两名网购者都是男士的概率;
(Ⅱ)若消费金额不低于6000元的网购者为“网购达人”,低于6000元的网购者为“非网购达人”,根据以上数据填写下面2×2列连表,并回答能否在犯错误率不超过0.05的前提下,认为“是否为网购达人与性别有关”?
女士男士总计
网购达人
非网购达人
总计
附:
P(K2≥k00.100.050.0250.010.005
k02.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果圆锥曲线$\frac{{x}^{2}}{m-1}+\frac{{y}^{2}}{m+8}$=1的焦距是与m无关的非零常数,那么它的焦点坐标是(  )
A.(0,±3)B.(±3,0)C.(0,±$\sqrt{7}$)D.(±$\sqrt{7}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.点M(1,1)到抛物线y=ax2准线的距离为3,则a的值为(  )
A.$\frac{1}{8}$B.8C.$\frac{1}{8}或-\frac{1}{16}$D.$\frac{1}{8}$或-16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=0.5|1-x|+m的图象与x轴有公共点,则m的取值范围是(  )
A.-1≤m<0B.m≤-1C.m≥1D.0<m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$的两个焦点,在C上满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0的点P的个数为(  )
A.0B.2C.4D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某地区上年度电价为0.8元/kW•h,年用电量为akW•h,本年度计划将电价降到0.55 元/kW•h至0.75元/kW•h之间,而用户期待电价为0.4元/kW•h,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3元/kW•h.(注:收益=实际用电量×(实际电价-成本价)),示例:若实际电价为0.6元/kW•h,则下调电价后新增加的用电量为$\frac{K}{0.6-0.4}$元/kW•h)
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系;
(2)设K=0.2a,当电价最低为多少仍可保证电力部门的收益比上一年至少增长20%?

查看答案和解析>>

同步练习册答案