精英家教网 > 高中数学 > 题目详情

【题目】中,三内角A,B,C的对边分别为a,b,c.

(1)若,求

(2)若,且为钝角,证明: ,并求的取值范围.

【答案】1,(2

【解析】试题分析:

(1)由题意结合正弦定理可得结合两角和差正余弦公式可得

(2)利用题意得到关于sinA的二次函数,结合二次函数的性质可得的取值范围是.

试题解析:

(1)由正弦定理可得

c,A=45°a=2

sinC=

∴C=60°120°

由正弦定理可得

C=60°,sinB=sin(A+C)=sin45°cos60°+cos45°sin60°=

b=

C=120°,sinB=sin(A+C)=sin45°cos120°+cos45°sin120°=

b=

(2)由题意得a=btanA,

∴由正弦定理得,则sinB=cosA

B为钝角,

BA=

C=π(A+B)=π(A++A)= 2A>0

A(0, )

sinA+sinC=sinA+sin(2A)=sinA+cos2A=sinA+12sin/span>2A=2(sinA)2+

A(0, ),0<sinA<

∴由二次函数可知,

sinA+sinC的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示

1的值,并根据频率分布直方图,估计红包金额的众数;

2以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)对任意,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

时,求的极值;

若曲线在点处切线的斜率为3,且对任意都成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,为三棱柱,且平面,四边形为平行四边形,

1)若,求证:平面

2)若,二面角的余弦值为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为.半小时后,货轮到达C点处,观测到灯塔A的方位角为.求此时货轮与灯塔之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义在区间上的函数,如果对任意,都有成立,那么称函数在区间上可被替代,称为替代区间.给出以下问题:

在区间上可被替代;

可被替代的一个替代区间

在区间可被替代,则

,则存在实数,使得在区间上被替代; 其中真命题有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数满足,则称局部奇函数.

为定义在上的局部奇函数

方程有两个不等实根;

为假命题,为真命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,是函数 图象上的任意两点,且角的终边经过点,若时,的 最小值为.

(1)求函数的解析式;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案