精英家教网 > 高中数学 > 题目详情
如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=DE=1,CD=2,M为CE上的点.
(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)当M为CE中点时,求直线BM与平面BEF所成角的正弦值.
考点:直线与平面所成的角,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)由已知中矩形ADEF与梯形ABCD所在的平面互相垂直,易得ED⊥平面ABCD,进而ED⊥BC,由勾股定理,我们易判断出△BCD中,BC⊥BD,由线面垂直的判定定理可得BC⊥平面BDE;
(Ⅱ)建立坐标系,求出平面BEF的一个法向量,利用向量的夹角公式,即可求直线BM与平面BEF所成角的正弦值.
解答: (Ⅰ)证明:在矩形ADEF中,ED⊥AD,
又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD,所以ED⊥BC.
在直角梯形ABCD中,AB=AD=1,CD=2,可得BC=
2

在△BCD中,BD=BC=
2
,CD=2,
因为BD2+BC2=CD2,所以BC⊥BD.
因为BD∩DE=D,所以BC⊥平面BDE;
(Ⅱ)解:建立如图所示的坐标系,则B(1,1,0),E(0,0,1),F(1,0,1),M(0,1,
1
2
),
BF
=(0,-1,1),
EF
(1,0,0),
BM
=(-1,0,
1
2
),
m
=(x,y,z)为平面BEF的一个法向量,则
-y+z=0
x=0

令y=1得
m
=(0,1,1).
设直线BM与平面BEF所成角为θ,则
sinθ=|cos<
m
BM
>|=
10
10

∴直线BM与平面BEF所成角的正弦值为
10
10
点评:本题考查的知识点是直线与平面垂直的判定,直线与平面所成角,熟练掌握直线与平面垂直的判定是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π
4
)(ω>0)与函数g(x)=cos(2x+φ)(|φ|≤
π
2
)的对称轴完全相同,则φ的值为(  )
A、
π
4
B、-
π
4
C、
π
2
D、-
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-x-6<0},B={x|x2+2x-8>0},则A∩B=(  )
A、{x|-3<x<-2}
B、{x|2<x<3}
C、{x|-4<x<-2或2<x<3}
D、{x|3<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥A1D;
(Ⅱ)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别分组频数频率
第1组[50,60)80.16
第2组[60,70)a
第3组[70,80)200.40
第4组[80,90)0.08
第5组[90,100)2b
合计
(Ⅰ)写出a、b、x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学现广场参加环保知识的志愿宣传活动,求所抽取的2名同学中至少有1名同学来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,底面是等腰梯形的四棱锥E-ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=
π
3

(Ⅰ)设F为EA的中点,证明:DF∥平面EBC;
(Ⅱ)若AE=AB=2,求三棱锥B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为4的正方形ABCD和等腰直角三角形ABE按图拼为新的几何图形,△ABE中,AB=AE,连结DE,CE,若DE=4
2
,M为BE中点
(Ⅰ)求CM与DE所成角的大小;
(Ⅱ)若N为CE中点,证明:MN∥平面ADE;
(Ⅲ)证明:平面CAM⊥平面CBE.

查看答案和解析>>

科目:高中数学 来源: 题型:

有排成一行的7个空位置,3位女生去坐,要求任何两个女生之间都要有空位,共有
 
种不同的坐法.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥中P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=2MC,求三棱锥P-QBM的体积.

查看答案和解析>>

同步练习册答案