精英家教网 > 高中数学 > 题目详情
4.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知C=$\frac{π}{3}$若a=2,b=3,求△ABC的外接圆的面积.

分析 由已知及余弦定理可求c的值,由正弦定理得外接圆半径R的值,从而可求△ABC的外接圆的面积S=4πR2

解答 解:∵C=$\frac{π}{3}$若a=2,b=3,
∴由余弦定理得:c2=a2+b2-2abcosC=7,可解得:c=$\sqrt{7}$,
由正弦定理得:$\frac{c}{sinC}=2R$=$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$,
解得:R=$\frac{\sqrt{21}}{3}$,
∴△ABC的外接圆的面积:S=4πR2=$\frac{28π}{3}$.

点评 本题主要考查了正弦定理,余弦定理的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$bx2+cx+d在(0,1)内既有极大值又有极小值,求c2+c(1+b)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在锐角△ABC中,角A、B、C所对的边分别为a、b、c,若2a=b+c,则$\frac{tanA}{tanB}+\frac{tanA}{tanC}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=$\frac{2π}{3}$.设线段AB的中点M在l上的投影为N,则$\frac{|MN|}{|AB|}$的最大值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log${\;}_{\frac{1}{2}}$(1-x),g(x)=log${\;}_{\frac{1}{2}}$(1+x)
(1)设函数F(x)=f(x)-g(x),求F(-$\frac{3}{5}$)的值;
(2)若x∈[0,1],f(m-2x)≤$\frac{1}{2}$g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对于函数f(x)=ax3+3x2+(a2+1)x+1,(a≠0,a∈R),甲、乙、丙三位同学的描述有且只有1人是错误的.
甲:函数y=f(x)在区间(-1,0)存在唯一极值点;
乙:对?x1∈R,?x2∈R,使得f(x1)+f(a-x2)=1;
丙:函数y=f(x)的图象与x轴、y轴以及直线x=1围成图形的面积不小于$\frac{11}{4}$.
则符合条件的实数a的取值范围为$(-∞,\frac{{-3-\sqrt{29}}}{2}]∪(-1,2)∪[\frac{{-3+\sqrt{29}}}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人.则P(B|A)=(  )
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{3}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知F(1,0)是抛物线y2=2px(p>0)的焦点.
(1)求p的值;
(2)点A,B是抛物线在第一象限内的两个动点,线段AB的中点E在直线x=2上,其垂直平分线交x轴于点D.
①求点D的坐标;
②设l为平行于y轴的直线,若l被以AD为直径的圆所截得的弦长为定值,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为0.95,0.9.
求:
(1)在一次射击中,目标被击中的概率;
(2)目标恰好被甲击中的概率.

查看答案和解析>>

同步练习册答案