5£®ÏÖ¸ø³öÏÂÁнáÂÛ£º
£¨1£©ÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinBÔòa£¾b£»
£¨2£©$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$ÊÇsinxºÍcosxµÄµÈ²îÖÐÏ
£¨3£©º¯Êýy=sinx+2cosxµÄÖµÓòΪ[-3£¬3]£»
£¨4£©Õñ¶¯·½³Ì$y=-2sin£¨2x+\frac{¦Ð}{8}£©$£¨x¡Ý0£©µÄ³õÏàΪ$\frac{¦Ð}{8}$£»
£¨5£©Èñ½ÇÈý½ÇÐÎABCÖУ¬¿ÉÄÜÓÐcosA+cosB+cosC£¾sinA+sinB+sinC£®
ÆäÖÐÕýÈ·½áÂ۵ĸöÊýΪ2£®

·ÖÎö £¨1£©ÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinB£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{a}{sinA}=\frac{b}{sinB}$£¬¼´¿ÉÅжϳöÕæ¼Ù£»
£¨2£©2$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$=$\sqrt{2}$$sin£¨x+\frac{¦Ð}{4}£©$£¬Õ¹¿ª¼´¿ÉÅжϳöÕæ¼Ù£»
£¨3£©º¯Êýy=sinx+2cosx=$\sqrt{5}$sin£¨x+¦È£©¡Ê$[-\sqrt{5}£¬\sqrt{5}]$£¬¼´¿ÉÅжϳöÕæ¼Ù£»
£¨4£©Õñ¶¯·½³Ì$y=-2sin£¨2x+\frac{¦Ð}{8}£©$=2sin$£¨2x+\frac{9¦Ð}{8}£©$£¨x¡Ý0£©£¬¼´¿ÉµÃ³ö³õÏࣻ
£¨5£©Èñ½ÇÈý½ÇÐÎABCÖУ¬ÓÉ$0£¼\frac{¦Ð}{2}-A£¼B£¼\frac{¦Ð}{2}$£¬¿ÉµÃ$sin£¨\frac{¦Ð}{2}-A£©$£¼sinB£¬¼´cosA£¼sinB£¬Í¬Àí¿ÉµÃ£ºcosB£¼sinC£¬cosC£¼sinA£¬¼´¿ÉÅжϳöÕæ¼Ù£®

½â´ð ½â£º£¨1£©ÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinB£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{a}{sinA}=\frac{b}{sinB}$£¬Ôòa£¾b£¬ÕýÈ·£»
£¨2£©2$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$=$\sqrt{2}$$sin£¨x+\frac{¦Ð}{4}£©$=$\sqrt{2}£¨\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx£©$=sinx+cosx£¬Òò´Ë$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$ÊÇsinxºÍcosxµÄµÈ²îÖÐÏÕýÈ·£»
£¨3£©º¯Êýy=sinx+2cosx=$\sqrt{5}$sin£¨x+¦È£©¡Ê$[-\sqrt{5}£¬\sqrt{5}]$£¬Òò´Ë²»ÕýÈ·£»
£¨4£©Õñ¶¯·½³Ì$y=-2sin£¨2x+\frac{¦Ð}{8}£©$=2sin$£¨2x+\frac{9¦Ð}{8}£©$£¨x¡Ý0£©µÄ³õÏàΪ$\frac{9¦Ð}{8}$£¬²»ÕýÈ·£»
£¨5£©Èñ½ÇÈý½ÇÐÎABCÖУ¬ÓÉ$0£¼\frac{¦Ð}{2}-A£¼B£¼\frac{¦Ð}{2}$£¬¿ÉµÃ$sin£¨\frac{¦Ð}{2}-A£©$£¼sinB£¬¼´cosA£¼sinB£¬Í¬Àí¿ÉµÃ£ºcosB£¼sinC£¬cosC£¼sinA£¬
Òò´ËcosA+cosB+cosC£¼sinA+sinB+sinC£¬²»ÕýÈ·£®
ÆäÖÐÕýÈ·½áÂ۵ĸöÊýΪ2£®
¹Ê´ð°¸Îª£º2£®

µãÆÀ ±¾Ì⿼²éÁ˼òÒ×Âß¼­µÄÅж¨·½·¨¡¢ÕýÏÒ¶¨ÀíµÄÓ¦Óá¢Èý½Çº¯ÊýͼÏóÓëÐÔÖʼ°ÆäÇóÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôa=${¡Ò}_{-1}^{1}$$\sqrt{1-{x}^{2}}$dx£¬Ôò£¨$\frac{a}{¦Ð}x-\frac{1}{x}$£©6µÄÕ¹¿ªÊ½Öеij£ÊýÏîÓëx×îµÍ´ÎÃÝÏîµÄϵÊý±ÈΪ£¨¡¡¡¡£©
A£®$\frac{5}{2}$B£®-$\frac{5}{2}$C£®$\frac{3}{2}$D£®-$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª£ºÒ»Ôª¶þ´Î²»µÈʽ-x2-2£¨a-1£©x-1£¼0µÄ½â¼¯ÊÇÈ«ÌåʵÊý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªtan2¦È=3£¬Ôò$\frac{2si{n}^{2}¦È-1}{sin¦È•cos¦È}$µÄֵΪ-$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÇóÖ±Ïß2x+y+1=0ÓëÖ±Ïß3x-y-2=0µÄ½»µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êý$f£¨x£©=x+\frac{k}{x}$ÇÒf£¨1£©=2£®
£¨1£©ÇóʵÊýkµÄÖµ¼°º¯ÊýµÄ¶¨ÒåÓò£»
£¨2£©ÅжϺ¯ÊýÔÚ£¨1£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£¬²¢Óö¨Òå¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªf£¨x£©=ax3+bx+2ÇÒf£¨5£©=16£¬Ôòf£¨-5£©µÄֵΪ£¨¡¡¡¡£©
A£®-12B£®-18C£®12D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}+1£¬x£¼1}\\{{x}^{2}+mx£¬x¡Ý1}\end{array}\right.$£¬Èôf£¨f£¨0£©£©=6m£¬ÔòʵÊýmµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{5}$B£®$\frac{4}{5}$C£®1D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=£¨x2-2x£©lnx+ax2+2£¨a¡ÊR£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßÓëÖ±Ïßx-3y-1=0´¹Ö±£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©Èôg£¨x£©=f£¨x£©+2x2-x-2£¬ÇÒµ±x¡Ê£¨$\frac{1}{{e}^{2}}$£¬e]£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©Ê±£¬g£¨x£©¡Ü2m-3eºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸