精英家教网 > 高中数学 > 题目详情
己知函数f(x)=sinωx+
3
cosωx(ω>0),f(
π
6
)+f(
π
2
)=0,且f(x)在区间(
π
6
π
2
),上递减,则ω=(  )
A、3B、2C、6D、5
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:首先通过三角恒等变换把函数变形成正弦型函数,进一步利用整体思想利用区间与区间的子集关系求出ω的范围,进一步利用代入法进行验证求出结果.
解答: 解:f(x)=sinωx+
3
cosωx
=2sin(ωx+
π
3

所以:
π
2
+2kπ≤ωx+
π
3
≤2kπ+
2

当k=0时,
π
≤x≤

由于:f(x)在区间(
π
6
π
2
)单调递减,
所以:
π
π
6
<x<
π
2

解不等式组得到:1≤ω≤
7
3

当ω=2时,f(
π
6
)+f(
π
2
)=0,
故选:B.
点评:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调性的应用,带入验证法的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,ABC-A1B1C1是地面边长为2,高为
3
2
的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).
(1)证明:PQ∥A1B1
(2)是否存在λ,使得平面CPQ⊥截面APQB?如果存在,求出λ的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线性变换T把点(1,-1)变成了点(1,0),把点(1,1)变成了点(0,1)
(Ⅰ)求变换T所对应的矩阵M;
(Ⅱ)求直线y=-1在变换T的作用下所得到像的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文) 如图,四棱锥S-ABCD中,底面ABCD为正方形,SA⊥平面ABCD,AB=3,SA=4
(1)求异面直线SC与AD所成角;
(2)求点B到平面SCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.设直线PQ过点T(5,-2),则以PQ为底边的等腰三角形APQ个数为 (  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如图所示:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm之间的概率;
(3)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某城区2010年底居民住房面积为a m2,其中危旧住房占
1
3
,新型住房占
1
4
,为了加快住房建设,计划用10年时间全部拆除危旧住房(每年拆除的数量相同),且从2011年起,居民住房只建新型住房,使新型住房面积每年比上一年增加20%.以2011年为第一年,设第n年底该城区的居民住房总面积为an,写出a1,a2,a3的表达式,并归纳出数列{an}的通项公式(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,E为AD上的点,EF⊥BC,垂足为F,沿EF将矩形ABFE折起,使二面角A-EF-C的大小为60°,连结AD,AC,BC.
(Ⅰ)若M为FC的中点,求证:AC∥平面BEM;
(Ⅱ)求直线CD与平面ABFE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断是否存在数列{an}同时满足下列条件:
①{an}是等差数列,且公差不为0;
②数列{
1
an
}也是等差数列.
如果存在,写出它的通项公式;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案