精英家教网 > 高中数学 > 题目详情
12.若动圆C过定点A(4,0),且在y轴上截得弦MN的长为8,则动圆圆心C的轨迹方程是(  )
A.x2=8yB.x2=8y(x≠0)C.y2=8xD.y2=8x(x≠0)

分析 设圆心C(x,y),过点C作CE⊥y 轴,垂足为E,利用垂径定理可得|ME|=4,又|CA|2=|CM|2=|ME|2+|EC|2,利用两点间的距离公式即可得出.

解答 解:设圆心C(x,y),过点C作CE⊥y 轴,垂足为E,则|ME|=4,
∴|CA|2=|CM|2=|ME|2+|EC|2
∴(x-4)2+y2=42+x2,化为y2=8x.
故选:C.

点评 本题综合考查了抛物线的标准方程及其性质、垂径定理、两点间的距离公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(x+1)<0的解集是(  )
A.[0,2)B.(-2,2)C.(-1,3)D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为$\sqrt{2}$,则其渐近线方程为(  )
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.垂直于直线x-2y+2=0且与圆x2+y2=5相切的直线的方程是(  )
A.2x+y+5=0或2x+y-5=0B.$2x+y+\sqrt{5}=0$或$2x+y-\sqrt{5}=0$
C.2x-y+5=0或2x-y-5=0D.$2x-y+\sqrt{5}=0$或$2x-y-\sqrt{5}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,M、N、K分别是正方体ABCD-A1B1C1D1的棱AB,CD,C1D1的中点.求证:
(1)AN∥平面A1MK;
(2)MK⊥平面A1B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(2+x)-loga(2-x)(0<a<1).
(1)判断f(x)的奇偶性;
(2)解不等式f(x)≥loga(3x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=sin(ωx+$\frac{π}{6}$)-ω(ω>0)的导函数f′(x)的最大值为3,则f(x)的最大值为(  )
A.0B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出的四个命题,其中正确的是(  )
A.?x0∈R,x${\;}_{0}^{2}$+2x0+2=0B.?x∈N,x3>c2
C.若x>1,则x2>1D.若a>b,则a2>b2

查看答案和解析>>

同步练习册答案