精英家教网 > 高中数学 > 题目详情
9.如图,在三棱柱ABC-A′B′C′中,CC′⊥底面ABC,∠ACB=90°,AC=BC=CC′=a,E是A′C′的中点,F是AB的中点.
(1)求证:BC⊥平面ACC′A′;
(2)求证:EF∥平面BCC′B′;
(3)设二面角C′-AB-C的平面角为θ,求tanθ的值.

分析 (1)根据线面垂直的判定定理证明AC⊥BC,即可证明BC⊥平面ACC′A′;
(2)根据线面平行的判定定理证明EF∥BG即可证明EF∥平面BCC′B′;
(3)根据二面角的定义先求出二面角的平面角,结合三角形的边角关系即可求tanθ的值.

解答 (1)证明:∵CC′⊥底面ABC,
∴CC′⊥BC
∵∠ACB=90°,∴AC⊥BC,
又AC∩CC′=C,
∴BC⊥平面ACC′A.
(2)证明:取B′C′的中点G,连接EG、BG,
又E是A′C′的中点,
则EG∥A′B′且等于A′B′的一半.
ABCEFG
∵F是AB中点,
∴BF∥A′B′且等于A′B′的一半,
∴EG与BF平行且相等.
∴四边形EGBF是平行四边形,∴EF∥BG,
又EF?平面BCC′B′,BG?平面BCC′B′,
∴EF∥平面BCC′B′
(3)解:连接FC、FC′.
∵AC=BC,F是AB中点,
∴CF⊥AB,
又∵CC′⊥底面ABC,
∴CC′⊥AB,
∴AB⊥平面CFC′,
∴C′F⊥AB,
∴∠C′FC为二面角C′-AB-C的平面角,
即θ=∠C′FC,
在Rt△ABC中,∠ACB=90°,AC=BC=a,F是AB中点,
∴CF=$\frac{\sqrt{2}}{2}a$,
又△C′FC是直角三角形,且∠C′CF=90°,CC′=a,
∴tanθ=tan∠C′FC=$\frac{a}{\frac{\sqrt{2}a}{2}}=\sqrt{2}$.

点评 本题主要考查线面平行和垂直的判定,以及二面角的求解,要求熟练掌握相应的判定定理以及,利用向量法求解二面角的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.用红、黄、蓝、绿、紫五种不同的颜色填充到如图所示的图形中,每格只填一种颜色,相邻两格不同色,记ξ为填充色为红色的格数,则P(ξ=2)=$\frac{6}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足an≠0,a1=$\frac{1}{3}$,an-1-an=2an•an-1(n≥2,n∈N*),则an=$\frac{1}{2n+1}$,a1a2+a2a3+…+a99a100=$\frac{11}{67}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图:正四棱锥V-ABCD中,高为2,底面ABCD是边长为4的正方形,则二面角V-AB-C的平面角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{3}$x3-4x.
(1)求f(x)的导数f′(x);
(2)求f(x)在闭区间[0,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-ax+1,x∈(0,+∞),a∈R)
(1)谈论函数f(x)在定义域内的极值点的个数
(2)设g(x)=mx-1(m>0),在a=1时,求方程f(x)-g(x)=0的解的个数
(3)求证:(1+$\frac{3}{2×4}$)(1+$\frac{9}{4×10}$)(1+$\frac{27}{10×28}$)…[1+$\frac{{3}^{n}}{{{(3}^{n-1}+1)(3}^{n}+1)}$<${e}^{\frac{3}{4}}$,(其中n∈N*,e是自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-$\frac{a}{x}$
(Ⅰ)当a=-1时,求f(x)的单调区间;
(Ⅱ)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(Ⅲ)若f(x)<x2在x∈(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知函数f(x)=$\frac{ax}{{x}^{2}+b}$在x=1处取得极值为2,设函数y=f(x)图象上任意一点(x,f(x))处的切线斜率为k.
(1)求实数k的取值范围;
(2)若对于任意0<x1<x2<1,存在k,使得k=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$,求证x1<|x|<x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{si{n}^{2}α-si{n}^{2}β}{sinαcosα-sinβcosβ}$.

查看答案和解析>>

同步练习册答案