精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别为a、b、c,向量
m
=(cos
A
2
,2)与
n
=(sin
A
2
,1)互相平行,
AB
AC
=6.
(1)求△ABC的面积;
(2)若b+c=7,求a的值.
考点:余弦定理,平面向量数量积的运算,正弦定理
专题:解三角形,平面向量及应用
分析:(1由已知可解得tan
A
2
=
1
2
,cosA=
1-tan2
A
2
1+tan2
A
2
=
3
5
,sinA=
4
5
,可求出|
AB
|×|
AC
|的值,从而可求△ABC的面积;
(2)由已知和(1)可知b+c=7,bc=10可解得:b=5或2,c=2或5.由余弦定理可求a的值.
解答: 解:(1)∵由向量
m
=(cos
A
2
,2)与
n
=(sin
A
2
,1)互相平行,可得cos
A
2
-2sin
A
2
=0,
∴有tan
A
2
=
1
2
,cosA=
1-tan2
A
2
1+tan2
A
2
=
3
5
,sinA=
4
5

AB
AC
=6,从而有|
AB
|×|
AC
|×COSA=6.
∴|
AB
|×|
AC
3
5
=6.|
AB
|×|
AC
|=10
∴S△ABC=
1
2
|
AB
|×|
AC
|×sinA=
1
2
×10×
4
5
=4.
(2)∵由已知和(1)可知b+c=7,bc=10
∴可解得:b=5或2,c=2或5.
∴由余弦定理知:a2=b2+c2-2bccosA=29-20×
3
5
=17
∴a=
17
点评:本题主要考察了平面向量数量积的运算,正弦定理、余弦定理的应用,属于基本知识考察.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
1
2
lnx的反函数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式的值:
(1)lg2+lg5+lg30-lg3;            
(2)100+27 
1
3
-16 
1
2
+
30.001

查看答案和解析>>

科目:高中数学 来源: 题型:

如图框图输出的S为(  )
A、15B、17C、26D、40

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2+1(x≤0)
-2x(x>0)
,若f(x)=10,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x-1(x>0)
0(x=0)
x+1(x<0)
,则f[f(
1
3
)]的值是(  )
A、1
B、
1
2
C、
1
3
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 
1
2
(4x-2x+1+1)的值域是[0,+∞),则它的定义域可以是(  )
A、(0,1]
B、(0,1)
C、(-∞,1]
D、(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形OABC中,边长AC=BC,OA=3,OB=1,则向量
AB
OC
的值为
 

查看答案和解析>>

同步练习册答案