精英家教网 > 高中数学 > 题目详情
函数f(x)=
x-1(x>0)
0(x=0)
x+1(x<0)
,则f[f(
1
3
)]的值是(  )
A、1
B、
1
2
C、
1
3
D、
1
5
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数的性质求解.
解答: 解:∵函数f(x)=
x-1(x>0)
0(x=0)
x+1(x<0)

∴f(
1
3
)=
1
3
-1=-
2
3

f[f(
1
3
)]=f(-
2
3
)=-
2
3
+1=
1
3

故答案为:1.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2cos40°+cos10°(1+tan60°tan10°)
1+cos10°
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log0.34,b=log43,c=0.3-2,则a,b,c的大小关系是(  )
A、c<a<b
B、b<a<c
C、a<c<b
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,α∈[π,
2
],求
-sinα-2cosα
-cosα+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,向量
m
=(cos
A
2
,2)与
n
=(sin
A
2
,1)互相平行,
AB
AC
=6.
(1)求△ABC的面积;
(2)若b+c=7,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an-an-1=3(n>1),则a10=(  )
A、27B、28C、29D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
x-1
的定义域是(  )
A、(1,+∞)
B、R
C、(-∞,1)∪(1+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论解关于x的方程lgx+lg(4-x)=lg(a+2x)的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+(2a-1)x2+2,若x=-1是y=f(x)的一个极值点,则a的值为(  )
A、2
B、-2
C、
2
7
D、4

查看答案和解析>>

同步练习册答案