精英家教网 > 高中数学 > 题目详情
7.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为$\frac{2\sqrt{3}}{3}$.

分析 利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.

解答 解:双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点为A(a,0),
以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.
若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=$\frac{\sqrt{3}}{2}b$,
可得:$\frac{|ab|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{\sqrt{3}}{2}b$,即$\frac{a}{c}=\frac{\sqrt{3}}{2}$,可得离心率为:e=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x<1}\\{2(x-1),x≥1}\end{array}\right.$若f(a)=f(a+1),则f($\frac{1}{a}$)=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=2cosx+sinx的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于给定的正整数k,若数列{an}满足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(1)证明:等差数列{an}是“P(3)数列”;
(2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是(  )
A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ae2x+(a-2)ex-x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
(1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1
(2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正方体ABCD-A1B1C1D1中,给出下列结论:
(1)AC⊥B1D1           
(2)AC1⊥BC1
(3)AB1与BC1成角为60°
  (4)AB与A1C成角为45°
所有正确结论的序号(1)、(3).

查看答案和解析>>

同步练习册答案