精英家教网 > 高中数学 > 题目详情
20.已知正项等比数列{an}满足a7=a6+2a5,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}=4{a}_{1}$,则$\frac{1}{m}+\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

分析 把所给的数列的三项之间的关系,写出用第五项和公比来表示的形式,求出公比的值,整理所给的条件,写出m,n之间的关系,用基本不等式得到最小值.

解答 解:∵a7=a6+2a5
∴a5q2=a5q+2a5
∴q2-q-2=0,
∴q=2,
∵存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}=4{a}_{1}$,
∴aman=16a12
∴qm+n-2=16=24,而q=2,
∴m+n-2=4,
∴m+n=6,
∴$\frac{1}{m}+\frac{4}{n}$=$\frac{1}{6}$(m+n)($\frac{1}{m}+\frac{4}{n}$)=$\frac{1}{6}$(5+$\frac{n}{m}$+$\frac{4m}{n}$)≥$\frac{1}{6}$(5+4)=$\frac{3}{2}$,当且仅当m=2,n=4时等号成立,
∴$\frac{1}{m}+\frac{4}{n}$的最小值为$\frac{3}{2}$,
故选:A.

点评 本题考查等比数列的通项和基本不等式,实际上应用基本不等式是本题的重点和难点,注意当两个数字的和是定值,要求两个变量的倒数之和的最小值时,要乘以两个数字之和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.从数字1、2、3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数$f(x)=2sin(ωx+\frac{π}{3})$,且f(α)=-2,f(β)=0,|α-β|的最小值是$\frac{π}{2}$,则f(x)的单调递增区间是(  )
A.$[kπ-\frac{5π}{12},kπ+\frac{π}{12}]\;\;(k∈Z)$B.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]\;\;(k∈Z)$
C.$[2kπ-\frac{2π}{3},2kπ+\frac{π}{3}]\;\;(k∈Z)$D.$[2kπ-\frac{5π}{6},2kπ+\frac{π}{6}]\;(\;k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$({2+\sqrt{3}i})•z=-2\sqrt{3}i$(i是虚数单位),那么复数z对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.程序框图如图所示,若其输出结果是30,则判断框中填写的是(  )
A.i<7?B.i<5?C.i>7?D.i>5?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设变量x、y,满足约束条件$\left\{\begin{array}{l}x+y≤3\\ x-y≥-1\\ y≤1\end{array}\right.$,则目标函数Z=2x-3y的最小值为(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A,B,C为不共线的三点,则“$\overrightarrow{AB}•\overrightarrow{CA}>0$”是“△ABC是钝角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=xlnx+ax2,a为常数.
(1)若曲线y=f(x)在x=1处的切线过点A(0,-2),求实数a的值;
(2)若f(x)有两个极值点x1,x2且xl<x2
①求证:$-\frac{1}{2}$<a<0
②求证:f (x2)>f (x1)>$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x(lnx+1)(x>0),f(x)的导数是f′(x).
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)求函数F(x)=ax2+f′(x)(a∈R)的单调区间;
(3)若斜率为k的直线与曲线y=f′(x)交于A(x1,y1),B(x2,y2)(x1<x2)两点,求证:x1<$\frac{1}{k}$<x2

查看答案和解析>>

同步练习册答案