| A. | $\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}-1}$ | B. | $\frac{1}{{2}^{k+1}-1}$ | ||
| C. | $\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k+1}-1}$ | D. | $\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+…+$\frac{1}{{2}^{k+1}-1}$ |
分析 分别写出n=k、n=k+1时不等式左边的表达式,然后相减即得结论.
解答 解:当n=k时,左边=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$,
当n=k+1时,左边=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$,
两式相减得:$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$,
故选:A.
点评 本题考查数学归纳法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com