分析 去绝对值号得出$f(x)=\left\{\begin{array}{l}{ax-ab+2}&{x≥b}\\{-ax+ab+2}&{x<b}\end{array}\right.$,这样根据f(x)在区间(0,+∞)上为增函数及一次函数的单调性便可判断出a,b的取值范围.
解答 解:$f(x)=a|x-b|+2=\left\{\begin{array}{l}{ax-ab+2}&{x≥b}\\{-ax+ab+2}&{x<b}\end{array}\right.$;
∵f(x)在(0,+∞)上为增函数;
∴x≥b时,f(x)=ax-ab+2为增函数;
∴a>0,b≤0;
∴实数a,b的取值范围分别为:(0,+∞),(-∞,0].
故答案为:(0,+∞),(-∞,0].
点评 考查含绝对值函数的处理方法:去绝对值号,以及一次函数的单调性.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}+2\sqrt{5}$ | B. | $2\sqrt{2}+\sqrt{5}$ | C. | $4\sqrt{2}+2\sqrt{5}$ | D. | $4\sqrt{2}+\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}-1}$ | B. | $\frac{1}{{2}^{k+1}-1}$ | ||
| C. | $\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k+1}-1}$ | D. | $\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+…+$\frac{1}{{2}^{k+1}-1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com