精英家教网 > 高中数学 > 题目详情
1.已知双曲线C:$\frac{{x}^{2}}{4}$-y2=1,P为C上的任意点.
(1)设点A的坐标为(3,0),求|PA|的最小值
(2)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数.

分析 (1)P(x,y),利用两点间的距离公式,结合消元法转化为一元二次函数形式进行求解即可.
(2)求出双曲线的渐近线,结合点到直线的距离公式进行求解.

解答 解:(1)设P(x,y),则$\frac{{x}^{2}}{4}$-1=y2
则|PA|=$\sqrt{(x-3)^{2}+{y}^{2}}$=$\sqrt{\frac{5}{4}{x}^{2}-6x+8}$=$\sqrt{\frac{5}{4}(x-\frac{12}{5})^{2}+\frac{4}{5}}$

当x=$\frac{12}{5}$时,PA的最小值为$\sqrt{\frac{4}{5}}$=$\frac{2\sqrt{5}}{5}$,

(2)双曲线的渐近线:y=$±\frac{1}{2}$,设P(x,y),则$\frac{{x}^{2}}{4}$-y2=1,即$\frac{{x}^{2}-4{y}^{2}}{4}$=1.则x2-4y2=4,
P到两条渐近线的距离乘积$\frac{|x-2y|}{\sqrt{5}}•\frac{|x+2y|}{\sqrt{5}}$=$\frac{|{x}^{2}-4{y}^{2}|}{5}$=$\frac{4}{5}$为常数.

点评 本题主要考查双曲线的性质,设出点的坐标,利用点到直线的距离公式以及两点间的距离公式进行化简转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.下列程序运行的结果是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若一个箱内装别标有号码1,2,…,50的50个小球,从中任意取两个球把其上的号码相加.
计算:
(1)其和能被3整除的概率;
(2)其和不能被3整除的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=a|x-b|+2在区间(0,+∞)上为增函数,则实数a,b的取值范围是(0,+∞),(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.记cot(-80°)=a,那么sin20°=$\frac{2a}{{a}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C:x2+y2-2x-4y+m=0和直线1:x+2y-4=0;
(1)当曲线C表示圆时,求m的取值范围;
(2)当曲线C表示圆时,被直线1截得的弦长为2$\sqrt{5}$.求m的值
(3)是否存在实数m,使得曲线C与直线1相交于M,N两点.且满足0M⊥ON(其中O为坐标原点).若存在.求m的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设抛物线y2=8x的交点为F,定直线l:x=4,P为平面上一动点,过点P作l的垂线,垂足为Q,且($\overrightarrow{PQ}$+$\sqrt{2}$$\overrightarrow{PF}$)•(($\overrightarrow{PQ}$-$\sqrt{2}$$\overrightarrow{PF}$)=0
(1)求点P的轨迹C的方程;
(2)直线l是圆O:x2+y2=r2的任意一条切线,l与曲线C交于A、B两点,若以AB为直径的圆恒过原点,求圆O的方程,并求出|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l经过点p(3,4),且它的倾斜角θ=120°.
(1)写出直线l的参数方程;
(2)求直线l与直线x一y+1=0的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,是一个算法的程序框图,当输出的y值为2时,若将输入的x的所有可能值按从小到大的顺序排列得到一个数列{an},则该数列的通项公式为an=an=3n-4.

查看答案和解析>>

同步练习册答案