精英家教网 > 高中数学 > 题目详情
14.若函数y=$\frac{1-2sinx}{sinx+3}$,求值域.

分析 分离常数可得y=-2+$\frac{7}{sinx+3}$,由-1≤sinx≤1和不等式的性质可得.

解答 解:分离常数可得y=$\frac{1-2sinx}{sinx+3}$=$\frac{1-2(sinx+3)+6}{sinx+3}$=-2+$\frac{7}{sinx+3}$,
∵-1≤sinx≤1,∴2≤sinx+3≤4,∵$\frac{7}{4}$≤$\frac{7}{sinx+3}$≤$\frac{7}{2}$,
∴-$\frac{1}{4}$≤-2+$\frac{7}{sinx+3}$≤$\frac{3}{2}$,即函数的值域为[-$\frac{1}{4}$,$\frac{3}{2}$]

点评 本题考查三角函数的最值,分离常数并利用不等式的性质是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列四个函数中,在定义域上不是单调函数的是(  )
A.y=x3B.y=$\sqrt{x}$C.y=$\frac{1}{x}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{m}$=(sinx,cosx),$\overrightarrow{n}$=(2,2-tanx),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(1)求$\frac{\sqrt{2}sin(x-\frac{π}{4})}{sinx+3cosx}$的值;
(2)设△ABC的三内角A,B,C所对的边分别为a,b,c,且cosA=tan(x+$\frac{π}{4}$),△ABC的面积为4$\sqrt{2}$,csinB=4sinC,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若一个箱内装别标有号码1,2,…,50的50个小球,从中任意取两个球把其上的号码相加.
计算:
(1)其和能被3整除的概率;
(2)其和不能被3整除的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(3x+ay)2(x+y)5的展开式中含有x2y5的项的系数为49,则实数a的值为1或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=a|x-b|+2在区间(0,+∞)上为增函数,则实数a,b的取值范围是(0,+∞),(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.记cot(-80°)=a,那么sin20°=$\frac{2a}{{a}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设抛物线y2=8x的交点为F,定直线l:x=4,P为平面上一动点,过点P作l的垂线,垂足为Q,且($\overrightarrow{PQ}$+$\sqrt{2}$$\overrightarrow{PF}$)•(($\overrightarrow{PQ}$-$\sqrt{2}$$\overrightarrow{PF}$)=0
(1)求点P的轨迹C的方程;
(2)直线l是圆O:x2+y2=r2的任意一条切线,l与曲线C交于A、B两点,若以AB为直径的圆恒过原点,求圆O的方程,并求出|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.正△ABP的顶点A(0,a)(a>0)为定点,顶点B在x轴上移动,且顶点A、B、P的顺序是逆时针方向,求顶点P的轨迹.

查看答案和解析>>

同步练习册答案