精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\frac{4\sqrt{3}}{3}$k,|$\overrightarrow{b}$|=k(k为正常数),且($\overrightarrow{a}$-2$\overrightarrow{b}$)$•\overrightarrow{b}$=0,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是$\frac{π}{6}$;若t∈R,则|(1-2t)$\overrightarrow{b}$+t$\overrightarrow{a}$|的最小值为k.

分析 由条件利用两个向量的数量积的定义求得cosθ=$\frac{\sqrt{3}}{2}$,可得θ的值.根据题意利用求向量的模的方法,二次函数的性质,求得|(1-2t)$\overrightarrow{b}$+t$\overrightarrow{a}$|取得最小值.

解答 解:设向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是θ,由题意可得($\overrightarrow{a}$-2$\overrightarrow{b}$)$•\overrightarrow{b}$=0=$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=$\frac{4\sqrt{3}}{3}$k2•cosθ-2k2
求得cosθ=$\frac{\sqrt{3}}{2}$,∴θ=$\frac{π}{6}$.
∵|(1-2t)$\overrightarrow{b}$+t$\overrightarrow{a}$|=$\sqrt{{[(1-2t)\overrightarrow{b}+t\overrightarrow{a}]}^{2}}$=$\sqrt{{(1-2t)}^{2}{•\overrightarrow{b}}^{2}{+t}^{2}{•\overrightarrow{a}}^{2}+2(1-2t)•t\overrightarrow{a}•\overrightarrow{b}}$
=$\sqrt{{(1-4t+{4t}^{2})•k}^{2}+2t(1-2t)•{2k}^{2}+\frac{16}{3}{{•t}^{2}•k}^{2}}$=k•$\sqrt{\frac{4}{3}{•t}^{2}+1}$,
故当t=0时,|(1-2t)$\overrightarrow{b}$+t$\overrightarrow{a}$|取得最小值为k,
故答案为:$\frac{π}{6}$;k.

点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.盒子中共有8个球,其中4个红球,3个绿球,1个黄球,这些球除颜色外其他完全相同.
(Ⅰ)从盒子中一次随机取出2个球,求取出的2个球颜色相同的概率;
(Ⅱ)从盒子中一次随机抽取3个球,每取得1个红球记1分,取得1个绿球记2分,取得1个黄球记3分,设X为取出3个球所得的分数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=\left\{\begin{array}{l}-2016x,x≤0\\-{x^2}-2016,x>0\end{array}\right.$,若f[f(m)]=0,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(2b-c,a)和向量$\overrightarrow{n}$=(cosC,cosA)为共线向量.
(Ⅰ)求角A的大小;
(Ⅱ)若a=6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知M(-2,7),N(4,1),P1,P2是线段MN的三等分点,求P1,P2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}是单调递增数列,且通项公式为an=|3n+$\frac{a}{{3}^{n}}$|,则实数a的取值范围是(  )
A.(-3,27)B.(-81,9)C.(-27,27)D.(-3,9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x-(e+$\frac{1}{e}$)]2+y2=1任意一点,则线段PQ的长度的最小值为(  )
A.$\frac{e-\sqrt{{e}^{2}-1}}{e}$B.$\frac{\sqrt{2{e}^{2}+1}-e}{e}$C.$\frac{\sqrt{{e}^{2}+1}-e}{e}$D.e+$\frac{1}{e}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知A=$\frac{π}{6}$,$\frac{bcosA-c}{a}$=$\frac{bcosC-a}{b}$.
(I)求角C的大小;
(Ⅱ)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}的前n项和为Sn,若S2n-1=(2n-1)(2n+1),则Sn=(  )
A.n(n+2)B.$\frac{n}{2}$(2n+3)C.n(2n+3)D.$\frac{n}{2}$(2n+1)

查看答案和解析>>

同步练习册答案