精英家教网 > 高中数学 > 题目详情
在极坐标系中,极点到直线ρcos(θ+
π
6
)=
1
2
的距离是
 
考点:简单曲线的极坐标方程
专题:选作题,坐标系和参数方程
分析:先将原极坐标方程化成直角坐标方程,再利用直角坐标方程点到直线的距离进行求解即可.
解答: 解:将原极坐标方程ρcos(θ+
π
6
)=
1
2
化为:直角坐标方程为:
3
x-y-1=0,
原点到该直线的距离是:d=
1
3+1
=
1
2

∴所求的距离是:
1
2

故答案为:
1
2
点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=x2-x-2,实数a>-2
(1)求函数在-2<x≤a之间的最小值;
(2)求函数在a≤x≤a+2之间的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正数a,b,c满足:a2+ab+ac+bc=6+2
5
,则3a+b+2c的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

矩阵N=
36
52
的特征值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线ρ=2sinθ与ρcosθ=-
3
2
的交点的极坐标为
 
(0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别是面A1B1C1D1和AA1D1D的中心,则EF和CD所成的角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一般地,如果函数y=f(x)的定义域为[a,b],值域也是[a,b],则称函数f(x)为“保域函数”,下列函数中是“保域函数”的有
 
.(填上所有正确答案的序号)
①f1(x)=x2-1,x∈[-1,1];  
②f2(x)=
π
2
sinx,x∈[
π
2
,π];
③f3(x)=x3-3x,x∈[-2,2];
④f4(x)=x-lnx,x∈[1,e2];
⑤f5(x)=
2x
x2-x+1
,x∈[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:

1234(26)=
 
(10)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
a
AC
=
b
,且
BD
=
1
2
DC
,则
AD
=(  )
A、
4
3
a
-
1
3
b
B、
2
3
a
+
1
3
b
C、
1
3
a
-
4
3
b
D、
1
3
a
+
2
3
b

查看答案和解析>>

同步练习册答案