精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,过双曲线C:x2-$\frac{{y}^{2}}{3}$=1的右焦点F作x轴的垂线l,则l与双曲线C的两条渐近线所围成的三角形的面积是$4\sqrt{3}$.

分析 求出双曲线的渐近线方程,求出垂线方程,求出三角形的顶点的坐标,然后求解面积.

解答 解:双曲线C:x2-$\frac{{y}^{2}}{3}$=1的右焦点F(2,0),
过双曲线C:x2-$\frac{{y}^{2}}{3}$=1的右焦点F作x轴的垂线l,x=2,
双曲线的渐近线方程为:$y=±\sqrt{3}x$,
可得l与双曲线C的两条渐近线所围成的三角形的顶点的坐标(2,2$\sqrt{3}$),(2,-2$\sqrt{3}$).
三角形的面积为:$\frac{1}{2}×4\sqrt{3}×2$=$4\sqrt{3}$.
故答案为:4$\sqrt{3}$.

点评 本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.画出函数y=x+sin|x|,x∈[-π,π]的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是(  )
A.30B.31C.32D.33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过F作斜率为-1的直线交双曲线的渐近线于点P,点P在第一象限,O为坐标原点,若△OFP的面积为$\frac{{{a^2}+{b^2}}}{8}$,则该双曲线的离心率为$\frac{\sqrt{10}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知AB,CD是外离两圆⊙O1,与⊙O2的外公共切线,切点为A,B,C,求证:A,B,C,D四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知实数x,y满足x>y,求证:2x+$\frac{1}{{x}^{2}-2xy+{y}^{2}}$≥2y+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.记集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y-4≤0,(x,y)∈A}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点P(x,y),则点P落在区域Ω2中的概率为(  )
A.$\frac{π-2}{4π}$B.$\frac{3π+2}{4π}$C.$\frac{π+2}{4π}$D.$\frac{3π-2}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知四棱锥P-ABCD的三视图如图所示,则此四棱锥的侧面积为(  )
A.6+4$\sqrt{5}$B.9+2$\sqrt{5}$C.12+2$\sqrt{5}$D.20+2$\sqrt{5}$

查看答案和解析>>

同步练习册答案