精英家教网 > 高中数学 > 题目详情
2.为了解我市高三学生参加体育活动的情况,市直属某校高三学生500人参加“体育基本素质技能”比赛活动,按某项比赛结果所在区间分组:第1组:[25,300,第2组:[30,35),第3组:[35,40),第4组:[40,45),第5组:[45,50],得到不完整的人数统计表如下:
年龄所在区间[25,30)[30,35)[35,40)[40,45)[45,50]
人数5050a150b
其频率分布直方图为:
(1)求人数统计表中的a和b的值;
(2)根据频率分布直方图,估计该项比赛结果的中位数;
(3)用分层抽样的方法从第1,2,3组中共抽取6人,再从这6人中随机抽取2人参加上一级比赛活动,求参加上一级比赛活动中至少有1人的比赛结果在第3组的概率.

分析 (1)由频率=$\frac{频数}{总数}$,利用频率分布直方图能求出a,b的值.
(2)根据频率分布直方图,能估计该项比赛结果的中位数.
(3)第1,2,3组共有300人,利用分层抽样在300名学生中抽取6名学生,第1组抽取的人数为1人,第2组抽取的人数为1人,第3组抽取的人数为4人,由此能求至少有1人比赛结果在第3组的概率.

解答 (本小题满分12分)
解:(1)由题设可知,a=0.08×5×500=200,b=0.02×5×500=50. …(3分)
(2)根据频率分布直方图,估计该项比赛结果的中位数为:35+$\frac{0.3}{0.08}$=38.75. …(6分)
(3)∵第1,2,3组共有50+50+200=300人,
∴利用分层抽样在300名学生中抽取6名学生,第1组抽取的人数为$\frac{6×50}{300}$=1,
第2组抽取的人数为$\frac{6×50}{300}$=1,第3组抽取的人数为$\frac{6×200}{300}$=4.…(8分)
记第1组抽取的1位同学为A,第2组抽取的1位同学为B,
第3组抽取的4位同学为C1,C2,C3,C4
∴从6位同学中抽两位同学有:(A,B),(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),
(B,C2),(B,C3),(B,C4),(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4).共有15种等可能.    …(10分)
其中2人比赛结果都不在第3组的有:(A,B),共1种可能.
∴至少有1人比赛结果在第3组的概率为1-$\frac{1}{15}$=$\frac{14}{15}$. …(12分)

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C对应的边长分别为a,b,c,且满足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C的对边分别为a、b、c,满足acosB+bcosA=2ccosC.
(1)求C;
(2)若△ABC的面积为2$\sqrt{3}$,a+b=6,求∠ACB的角平分线CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=2sinxcosx-2\sqrt{3}{cos^2}x+\sqrt{3}$的图象为
①图象C关于直线$x=\frac{11π}{12}$对称;
②函数f(x)在区间$(-\frac{π}{12},\frac{5π}{12})$内是增函数;
③由y=2sin2x的图象向右平移$\frac{π}{3}$个单位长度可以得到图象C;
以上三个论断中,正确论断的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=($\frac{1}{{e}^{x}-1}$+$\frac{1}{2}$)+x,则函数f(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,已知四棱锥S-ABCD,底面ABCD为菱形,∠ABC=60°,SA⊥平面ABCD,E,F分别是CD,SD的中点,点H为SB上的动点,且EH与平面SAB所成最大角的正切值为$\frac{\sqrt{6}}{2}$.
(1)证明:AE⊥SB;
(2)求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知α,β∈(0,π),cosα=$\frac{12}{13}$,cos(α+β)=$\frac{3}{5}$,则cosβ=$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程3x2+y2=3x-2y的非负整数解(x,y)的组数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2015年12月27日全国人大常委会会议通过了关于修教口与计划生育法的决定,“全面二孩”从2016年元旦起开给实施.A市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民45人、女性市民55人进行调查,得到以下2×2列联表.
  支持反对 合计 
男性 30 15 45
 女性 45 10 55
 合计 75 25 100
(1)根据以上数据,能否有90%的把握认为A市市民“支持全面二孩”与“性别”有关?
(2)现从参与调查的女性用户中按分层抽样的方法选出11名发放礼品,在所抽取的11人中分别求出“支持”和“不支持”态度的人数;
(3)将上述调查所得到的频率视为概率,现在从A市所有市民中,采取随机抽样的方法抽取3位市民进行长期跟踪调查,记被抽取的3位市民中持“支持”态度人数为X.
①求X的分布列;
②求X的数学期望E(X)和方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步练习册答案