精英家教网 > 高中数学 > 题目详情
已知α是第一象限角,且cosα=
5
13

(1)求sin2α的值
(2)求
sin(α+
π
4
)
cos(2α+4π)
的值.
考点:两角和与差的正弦函数,同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)先利用平方关系求得sinα的值,进而利用二倍角公式求得sin2α的值.
(2)利用两角和公式和二倍角公式对分子和分母进行展开化简.
解答: 解:(1)因为α是第一象限角,所以sinα=
1-cos2α
=
12
13

所以sin2α=2sinαcosα=2×
5
13
×
12
13
=
120
169

(2)
sin(α+
π
4
)
cos(2α+4π)
=
2
2
(cosα+sinα)
cos2α
=
2
2
(cosα+sinα)
cos2α-sin2α
=
2
2
(sinα+cosα)
(sinα+cosα)(cosα-sinα)
=
2
2
cosα-sinα
=
2
2
5
13
-
12
13
=-
13
2
4
点评:本题主要考查了三角函数恒等变换的应用,同角三角函数基本关系的应用.考查了学生运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点F是双曲线y2-
x2
3
=1的焦点,过F的直线l与双曲线同一支交于两点,则直线l的倾斜角的取值范围是(  )
A、[
π
3
6
]
B、(
π
3
3
C、[
π
6
π
3
]
D、(0,
π
6
)∪(
6
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,5,-1),
b
=(2,2,3),
c
=(1,-1,2),则向量
a
-
b
+4
c
的坐标为(  )
A、(5,-1,4)
B、(5,1,-4)
C、(-5,1,4)
D、(-5,-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(1)|x-1|<1-2x
(2)|x-1|-|x+1|>x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,求z=x+2y-4的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2x2+x-1>0},B={x|(x-m)[x-(m+1)]<0}.
(1)当m=0时,求A∩B;
(4)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

1,4,9,16…这些数可以用图1的点阵表示,古希腊毕达哥拉斯学派将其称为正方形数,记第n个数为an+1,在图2的杨辉三角中,第n(n≥2)行是(a+b)n-1展开式的二项式系数
C
0
n-1
C
1
n-1
,…,
C
n-1
n-1
记杨辉三角的前n行所有数之和为Tn
(Ⅰ)求an和Tn的通项公式;
(Ⅱ)当n≥2时,比较an与Tn的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,焦点在x轴上,离心率为
1
2
,右焦点到右顶点的距离为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:mx+y+1=0与椭圆C交于A,B两点,是否存在实数m,使|
OA
+
OB
|=|
OA
-
OB
||成立?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-ax+ex,x∈R
(1)若a=e,求函数f(x)的单调区间;
(2)若a>0,且对于任意x>0不等式f(x)>0恒成立,试确定实数a的取值范围;
(3)构造函数F(x)=f(x)+f(-x)(x>0),求证:F(1)F(2)…F(2014)>(e2015+2)1007

查看答案和解析>>

同步练习册答案