精英家教网 > 高中数学 > 题目详情
下列函数中,在其定义域上既是奇函数又是增函数的是(  )
A、y=x2
B、y=x-1
C、y=x 
1
2
D、y=x3
考点:函数单调性的判断与证明,函数奇偶性的判断
专题:函数的性质及应用
分析:根据奇函数、偶函数的定义,奇偶函数定义域的特点,反比例函数在其定义域上的单调性,以及单调性的定义即可找出正确选项.
解答: 解:y=x2是偶函数;
反比例函数y=x-1在其定义域上没有单调性;
y=x
1
2
的定义域为[0,+∞),不关于原点对称,所以是非奇非偶函数;
y=x3是奇函数,根据单调性的定义知该函数在其定义域上是增函数;
∴D正确.
故选D.
点评:考查奇函数、偶函数的定义,奇偶函数定义域的特点,函数单调性的定义,以及反比例函数在其定义域上的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x+x3(x∈R)当0<θ<
π
2
时,f(asinθ)+f(1-a)>0恒成立,则实数a的取值范围是(  )
A、(-∞,1]
B、(-∞,1)
C、(1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是
 
(填上你认为正确选项的序号)
①函数y=-sin(kπ+x)(k∈Z)是奇函数;
②函数y=-2sin(2x+
π
3
)在区间(0,
π
12
)上是增函数;
③函数y=cos2x-sin2x的最小正周期为π;
④函数y=2tan(
x
2
+
π
4
)的一个对称中心是(
π
2
,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B(-1,0),C(1,0).G,I分别是△ABC的重心和内心,
IG
BC

(1)求原点A的轨迹M的方程;
(2)过点C的直线交曲线M于P、Q两点,H是直线x=4上一点,设直线CH,PH,QH的效率分别为k1,k2,k2,求证:2k1=k2+k2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3-ax2-ax,g(x)=2x2+4x+c
(1)试判断f(x)的零点个数;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P在曲线y=ex上,点Q在曲线y=lnx上,则|PQ|的最小值为(  )
A、
2
B、
2
(1-ln2)
C、
3
D、
3
(1+ln3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+2x,x>0
0,x=0
x2+mx
是奇函数,M={y|y=f(x),x<0},N={x|ax-a+2>0},M⊆N
(1)若实数m的值及a的取值范围;
(2)若函数f(x)在区间[-1,t-2]上单调递增,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+5x,x≥0
-ex+1,x<0
,若f(x)≥kx,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx)(ω>0)的最小正周期为π,则ω=
 
,f(
π
3
)=
 
,在(0,π)内满足f(x0)=0的x0=
 

查看答案和解析>>

同步练习册答案