【题目】已知函数f(x)=ax+x2-xlna,a>1.
(1)求证:函数f(x)在(0,+∞)上单调递增;
(2)对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.
【答案】(1)见解析(2)1<a≤e.
【解析】试题分析:(1)根据函数的解析式,得到
,由
,且
时,得到
,即可证得函数在
单调递增;
(2)由(1)得到函数的单调性,求解函数的最值,令
,可得
为单调递增函数,得
,即可得到函数的最值,即可作出证明.
试题解析: (1)证明:f′(x)=axlna+2x-lna=2x+(ax-1)lna,
由于a>1,故当x∈(0,+∞)时,lna>0,ax-1>0,所以f′(x)>0,
故函数f(x)在(0,+∞)上单调递增.
(2)由(1)可知,当x∈(-∞,0)时,f′(x)<0,
故函数f(x)在(-∞,0)上单调递减.
所以,f(x)在区间[-1,0]上单调递减,在区间[0,1]上单调递增.
所以f(x)min=f(0)=1, f(x)max=max{f(-1),f(1)},
f(-1)=
+1+lna,f(1)=a+1-lna,
f(1)-f(-1)=a-
-2lna,
记g(x)=x-
-2lnx,g′(x)=1+
-
=
2≥0,
所以g(x)=x-
-2lnx递增,故f(1)-f(-1)=a-
-2lna>0,
所以f(1)>f(-1),于是f(x)max=f(1)=a+1-lna,
故对任意x1,x2∈[-1,1],|f(x1)-f(x2)|max=|f(1)-f(0)|=a-lna,
a-lna≤e-1,所以1<a≤e.
科目:高中数学 来源: 题型:
【题目】如图,已知圆
:
经过椭圆
:
(
)的左右焦点
,
,与椭圆
在第一象限的交点为
,且
,
,
三点共线.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设与直线
(
为原点)平行的直线
交椭圆
于
,
两点.当
的面积取到最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的有( )
①函数y=
的定义域为{x|x≥1};
②函数y=x2+x+1在(0,+∞)上是增函数;
③函数f(x)=x3+1(x∈R),若f(a)=2,则f(-a)=-2;
④已知f(x)是R上的增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b).
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数茎叶图如下:
![]()
(1)求甲命中个数的中位数和乙命中个数的众数;
(2)通过计算,比较甲乙两人的罚球水平.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
,
.
(1)求证:对
,直线
与圆
总有两个不同的交点
;
(2)求弦
的中点
的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数
,使得原
上有四点到直线
的距离为
?若存在,求出
的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数,
),
(
,![]()
),
⑴若
,
.求
在
上的最大值
的表达式;
⑵若
时,方程
在
上恰有两个相异实根,求实根
的取值范围;
⑶若
,
,求使
得图像恒在
图像上方的最大正整数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
﹥
﹥0)的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线
的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.且曲线
的左焦点
在直线
上.
(1)若直线
与曲线
交于
两点,求
的值;
(2)求曲线
的内接矩形的周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com