精英家教网 > 高中数学 > 题目详情
8.函数f(x)=$\frac{x+1}{x}$的单调递减区间为(-∞,0),(0,+∞).

分析 先求导,再令f′(x)<0,解得即可.

解答 解:∵f(x)=1+$\frac{1}{x}$,
∴f′(x)=-$\frac{1}{{x}^{2}}$<0
∵x≠0
∴函数f(x)的单调递减区间为(-∞,0),(0,+∞),
故答案为:(-∞,0),(0,+∞).

点评 本题主要考查了导数与函数的单调性关系,注意函数的定义域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知x,y满足$\left\{\begin{array}{l}2x-y≥0\\ x+y-1≥0\\ x-2y-1≤0\end{array}\right.$,则$\frac{y-1}{x+1}$的取值范围是(  )
A.$[-\frac{5}{2},-\frac{1}{4}]$B.$[-\frac{5}{2},2]$C.$[-\frac{1}{2},2)$D.$[-\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别是a,b,c.若b=3,c=2$\sqrt{3}$,A=30°,求角B、C及边a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={x|(a-1)x2-x+2=0}有且只有一个元素,则a=1或$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知命题p:|x-$\frac{3}{4}$|≤$\frac{1}{4}$,命题q:(x-a)(x-a-1)≤0,若p是q成立的充分非必要条件,则实数a的取值范围是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{3x-1}{3x+1}$的值域是{y|y≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,$\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$是角A,B,C成等差数列的充分不必要条件.(充分不必要条件,充要条件,必要不充分条件)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:(m+1)x+y+m-2=0和直线l2:2x+my-1=0(m∈R).
(1)当l1⊥l2时,求实数m的值;
(2)当l1∥l2时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知集合A={x|3<x<7},B={x|2<x<10},求A∪B,A∩B,∁RA
(2)计算下列各式
①$2{log_5}25+{10^{lg\sqrt{3}}}+ln{e^{({1-\sqrt{3}})}}+{({\sqrt{2}-1})^0}$
②(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)

查看答案和解析>>

同步练习册答案