精英家教网 > 高中数学 > 题目详情
14.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,60)内的数据个数为(  )
A.14B.15C.16D.17

分析 由样本中数据在[20,60)上的频率为0.8,求出样本中数据在[20,60)上的频数为24,由此能估计样本在[40,60)内的数据个数.

解答 解:∵一个频率分布表(样本容量为30)不小心被损坏了一部分,
只记得样本中数据在[20,60)上的频率为0.8,
∴样本中数据在[20,60)上的频数为:30×0.8=24,
∴估计样本在[40,60)内的数据个数为:24-4-5=15.
故选:B.

点评 本题考查频数的求法,涉及到频率分布表等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知i是虚数单位,复数z满足(1-i)z=i,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若cosA=$\frac{4}{5}$,cosC=$\frac{5}{13}$,a=1,则b=$\frac{21}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-ax,g(x)=x+a.
(Ⅰ)若f(x)在x=1处取得极值,求实数a的值;
(Ⅱ)若对于任意的x1∈[0,1],存在x2∈[0,1],使得f(x1)=g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若(1+x)(a-x)6=a0+a1x+a2x2+…+a7x7,其中a=${∫}_{0}^{π}$(sinx-cosx)dx,则a0+a1+a2+…+a6的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有下列一列数:1,8,27,64,      ,216,343,…,按照此规律,横线中的数应为(  )
A.75B.100C.125D.150

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=asinx+bcosx(x∈R),若x=x0是函数f(x)的一条对称轴,且tanx0=3,则点(a,b)所在的直线为(  )
A.x-3y=0B.x+3y=0C.3x-y=0D.3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,网格纸上小正方形的边长为a,粗实线画出的是某多面体的三视图,此几何体的表面积为$12+4(\sqrt{2}+\sqrt{5})$,则实数a=(  )
A.1B.2C.$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tan($\frac{α}{2}$+$\frac{π}{4}$)=-2,则cosα的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

同步练习册答案