精英家教网 > 高中数学 > 题目详情

【题目】在矩形ABCD中,对角线AC分别与ABAD所成的角为αβ,则sin2α+sin2β1,在长方体ABCDA1B1C1D1中,对角线AC1与棱ABADAA1所成的角分别为α1α2α3,与平面AC,平面AB1,平面AD1所成的角分别为β1β2β3,则下列说法正确的是(  )

sin2α1+sin2α2+sin2α31  ②sin2α1+sin2α2+sin2α32

cos2α1+cos2α2+cos2α31   ④sin2β1+sin2β2+sin2β31

A. ①③B. ②③C. ①③④D. ②③④

【答案】D

【解析】

由已知条件,分别确定各个角的三角函数值,进而判断各个命题的真假,可得答案

(1)

所以,①错,②对;

(2)

所以,③对

(3),所以,④对

答案选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,若恰有两个根,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l12xy+20l2x+y+40

1)若一条光线从l1l2的交点射出,与x轴交于点P30),且经x轴反射,求反射光线所在直线的方程;

2)若直线l经过点P30),且它夹在直线l1l2之间的线段恰被点P平分,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)判断函数:的单调性;

2)对于区间上的任意不相等实数,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy满足条件,求4x-3y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且

的解析式;

,若存在实数ab使得,求a的取值范围;

若对任意都有恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若

②若

③若

④若

其中正确命题的序号是(

A.①和③B.②和③C.②和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数符号表示不超过x的最大整数,例如定义函数则下列命题正确中的是__________

1)函数的最大值为1

2)函数是增函数;

3)方程有无数个根;

4)函数的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥E-ABCD中,AE⊥DECD⊥平面ADEAB⊥平面ADECD=DA=6AB=2DE=3.

I)求棱锥C-ADE的体积;

II)求证:平面ACE⊥平面CDE

III)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案