精英家教网 > 高中数学 > 题目详情
12.小媛在解试题:“已知锐角α与β的值,求α+β的正弦值”时,误将两角和的正弦公式记成了sin(α+β)=cosαcosβ+sinαsinβ,解得的结果为$\frac{{\sqrt{6}+\sqrt{2}}}{4}$,发现与标准答案一致,那么原题中的锐角α的值为$\frac{π}{3}$,$\frac{π}{4}$,$\frac{π}{6}$.(写出所有的可能值)

分析 由已知利用两角和与差的正弦函数余弦函数公式及特殊角的三角函数值即可计算得解.

解答 解:由题意可得:sinαcosβ+cosαsinβ=cosαcosβ+sinαsinβ=$\frac{{\sqrt{6}+\sqrt{2}}}{4}$=$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{2}}{2}$×$\frac{1}{2}$,
观察可得:锐角α的值可能为$\frac{π}{3}$,$\frac{π}{4}$,$\frac{π}{6}$.
故答案为:$\frac{π}{3}$,$\frac{π}{4}$,$\frac{π}{6}$.

点评 本题主要考查了两角和与差的正弦函数余弦函数公式及特殊角的三角函数值的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1(λ,μ∈R),则|$\overrightarrow{OC}$|的最小值为(  )
A.1B.$\frac{\sqrt{5}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆O:x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求弦AB的长;
(2)当弦AB被P0平分时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ,曲线M的直角坐标方程为x-2y+2=0(x>0)
(1)以曲线M上的点与点O连线的斜率k为参数,写出曲线M的参数方程;
(2)设曲线C与曲线M的两个交点为A,B,求直线OA与直线OB的斜率之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果复数z=a2+a-2+(a2-1)i为纯虚数,则实数a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知下列命题:
①命题“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x“
②已知p,q为两个命题,若“p∨q”为假命题“(¬p)∧(¬q)”为真命题;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列求导计算正确的是(  )
A.($\frac{lnx}{x}$)′=$\frac{lnx-1}{{x}^{2}}$B.(log2x)′=$\frac{1}{xln2}$C.(2x)′=2x$\frac{1}{ln2}$D.(xsinx)′=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设锐角△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{b}{2}$是2asinAcosC与csin2A的等差中项.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各数中,最小的数是(  )
A.111 111(2)B.105(8)C.200(6)D.75

查看答案和解析>>

同步练习册答案