分析 (1)依题意直线AB的斜率为-1,直线AB的方程,根据圆心0(0,0)到直线AB的距离,由弦长公式求得AB的长.
(2)当弦AB被点P0平分时,AB和OP垂直,故直线AB 的斜率为$\frac{1}{2}$,根据点斜式方程直线AB的方程.
解答 解:(1)当α=135°时,kAB=-1,直线AB:y+2=-(x-1),即x+y+1=0
设AB中点为M,则OM⊥AB,且平分弦AB.
∵$|{OM}|=\frac{{\sqrt{2}}}{2}$,
∴$|{AM}|=\frac{{\sqrt{30}}}{2}$,
∴$|{AB}|=\sqrt{30}$.
(2)当弦AB被点P平分时,OP⊥AB,而kOP=-2,
∴${k_{AB}}=\frac{1}{2}$.
∴弦AB所在直线的方程为:x-2y+5=0.
点评 本题考查用点斜式求直线方程,点到直线的距离公式,弦长公式的应用,求出圆心0(0,0)到直线AB的距离为d,是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b⇒c-a<c-b | B. | $\frac{c}{a}>\frac{c}{b},c>0⇒a<b$ | C. | $a>b>0,c>d⇒\sqrt{\frac{a}{d}}>\sqrt{\frac{b}{c}}$ | D. | $\root{n}{a}<\root{n}{b}(n∈{N^*})⇒a<b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | .[-3,3] | B. | [-2$\sqrt{3}$,2$\sqrt{3}$] | C. | [0,2$\sqrt{3}$] | D. | [-$\frac{1}{2}$,2$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com