精英家教网 > 高中数学 > 题目详情
直线L经过点P(1,2),且被两直线L1:3x-y+2=0和 L2:x-2y+1=0截得的线段AB中点恰好是点P,求直线L的方程.
考点:直线的点斜式方程
专题:直线与圆
分析:设A(a,b),则B(2-a,4-b),由A、B分别在L1、L2上,解得:a=
1
5
b=
13
5
,由此能求出直线L的方程.
解答: 解:设A(a,b),
∵P(1,2)是AB中点,∴B(2-a,4-b),
又∵A、B分别在L1、L2上,
∴方程组
3a-b+2=0
(2-a)-2(4-b)+1=0

解得:a=
1
5
b=
13
5

kAP=-
3
4
,直线L方程为y-2=-
3
4
(x-1)

整理,得3x+4y-11=0.
点评:本题考查直线方程的求法,是基础题,解题时要认真审题,注意中点坐标公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若中心在坐标原点,对称轴为坐标轴的椭圆经过点(4,0),离心率为
3
2
,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

我省某房地产开发商用2016万元购得一块商业用地,计划在此地上建造一栋至少6层、每层2016平方米的楼房.经测算,如果将楼房建造x层,则每平方米的平均建造费用为(2016+100x)元,为了使楼房每平方米平均的综合费用最小,此楼房应建造多少层?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin
1
2
x,1),
n
=(4
3
cos
1
2
x,2cosx),设函数f(x)=
m
n

(1)求函数f(x)的解析式.
(2)求函数f(x),x∈[-π,π]的单调递增区间.
(3)设函数h(x)=f(x)-k(k∈R)在区间[-π,π]上的零点的个数为n,试探求n的值及对应的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(1)若x=
π
6
,求向量
a
c
的夹角;
(2)当x∈[
π
2
8
]时,求函数f(x)=2
a
b
+1的最大值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足Sn=2an-n,n∈N*
(1)求数列{an}的通项公式;
(2)求证:
n-1
2
a1
a2
+
a2
a3
+…+
an
an+1
n
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知角A,B,C的对边分别为a,b,c且
a-c
b-c
=
sinB
sinA+sinC

(1)求A;
(2)求函数y=2sin2B+cos(
π
3
-2B)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD丄CD,AB∥CD,AB=AD=
1
2
CD=2,点M在线段EC上.
(Ⅰ)当点M为EC中点时,求证:BM∥平面ADEF;
(Ⅱ)求证:平面BDE丄平面BEC;
(Ⅲ)若平面BDM与平面ABF所成二面角为锐角,且该二面角的余弦值为
6
6
时,求三棱锥M-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
4x
x2+1
,x∈[-2,2]
的最大值是
 
,最小值是
 

查看答案和解析>>

同步练习册答案