精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线 ,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线 .

(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线,求的参数方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

【答案】(1,;(2.

【解析】试题分析:(1)根据将直线极坐标方程化为直角坐标方程,根据图像伸缩变换得曲线的直角坐标方程,再根据椭圆参数方程得曲线的参数方程为参数)(2)根据点到直线距离公式得点到直线的距离为

利用配角公式得,再根据正弦函数性质得最值及对应自变量的取值

试题解析:(1)由题意知,直线的直角坐标方程为:

曲线的直角坐标方程为:

曲线的参数方程为: 为参数)

2)设点的坐标,则点到直线的距离为:

时,点,此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是自然对数的底数).

1)若,求函数的单调区间;

2)若 内无极值,求的取值范围;

3)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 的夹角为60°.
(1)若 都是单位向量,求|2 + |;
(2)若| |=2, + 与2 ﹣5 垂足,求| |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立, (Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在x∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b﹣1)(a≠0).
(1)当a=1,b=2时,求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;
(3)在(2)的条件下,若f(x)的两个不动点为x1 , x2 , 且f(x1)+x2= ,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某河道中过度滋长一种藻类,环保部门决定投入生物净化剂净化水体. 因技术原因,第t分钟内投放净化剂的路径长度 (单位:m),净化剂净化水体的宽度 (单位:m)是时间t(单位:分钟)的函数: (由单位时间投放的净化剂数量确定,设为常数,且).

(1)试写出投放净化剂的第t分钟内净化水体面积的表达式;

(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足: .

(1)若,求数列的通项公式;

(2)若.

求证:数列为等差数列;

记数列的前项和为,求满足的所有正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。

现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令

是对两次排序的偏离程度的一种描述。

()写出的可能值集合;

()假设等可能地为1,2,3,4的各种排列,求的分布列;

()某品酒师在相继进行的三轮测试中,都有

(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);

(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意的n∈N* , 存在a,b∈R,使得1×(n2﹣12)+2×(n2﹣22)+3×(n2﹣32)+…+n(n2﹣n2)= (an2+b)
(1)求a,b的值;
(2)用数学归纳法证明上述恒等式.

查看答案和解析>>

同步练习册答案