精英家教网 > 高中数学 > 题目详情
17.已知梯形ABCD中,BC∥AD,AB=AC=$\frac{1}{2}$AD=1,且∠ABC=90°,以AC为折痕使得折叠后的图形中平面DAC⊥平面ABC.
(1)求证:DC⊥平面ABC;
(2)求四面体ABCD的外接球的体积;
(3)在棱AB上是否存在点P,使得直线CP与平面ABD所成的角为45°?若存在,请求出线段PB的长度,若不存在,请说明理由.

分析 (1)取AD的中点E,连CE,证明DC⊥AC,即可证明DC⊥平面ABC;
(2)确定四面体ABCD的外接球的球心是AD的中点E,即可求四面体ABCD的外接球的体积;
(3)以B为原点,建立如图空间直角坐标系,求出平面ABD的法向量,利用直线CP与平面ABD所成的角为45°,建立方程,即可得出结论.

解答 (1)证明:取AD的中点E,连CE,由条件可知四边形ABCE是正方形,
三角形CED是等腰直角三角形,∴∠ACD=∠ACE+∠ECD=45°+45°=90°
即DC⊥AC…(2分)
∵平面DAC⊥平面ABC,∴DC⊥平面ABC…(4分)
(2)解:∵DC⊥平面ABC,∴DC⊥AB
又∵AB⊥BC,BC∩DC=C,
∴AB⊥平面DBC,∴AB⊥DB,
即∠ABD=∠ACD=90°,
∴四面体ABCD的外接球的球心是AD的中点E…(6分)
即四面体ABCD的外接球的半径R=1,故四面体ABCD的外接球的体积为$\frac{4π}{3}$…(…(8分)
(3)解:以B为原点,建立如图空间直角坐标系,则A(0,1,0),C(1,0,0),D(1,0,$\sqrt{2}$),
∴$\overrightarrow{BA}$=(0,1,0),$\overrightarrow{BD}$=(1,0,$\sqrt{2}$),
设平面ABD的法向量$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{y=0}\\{x+\sqrt{2}z=0}\end{array}\right.$
令z=1,则$\overrightarrow{n}$=(-$\sqrt{2}$,0,1)…(10分)
设P(0,t,0)(t>0),则$\overrightarrow{CP}$=(-1,t,0),
∴$\frac{\sqrt{2}}{\sqrt{3}•\sqrt{{t}^{2}+1}}$=sin45°=$\frac{\sqrt{2}}{2}$,
解得t=$\frac{\sqrt{3}}{3}$,即PB=$\frac{\sqrt{3}}{3}$
故存在点P,使得直线CP与平面ABD所成的角为45,且PB=$\frac{\sqrt{3}}{3}$…(12分)

点评 本题考查平面与平面垂直的性质,考查线面垂直的判定,考查四面体ABCD的外接球的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.化简:y=sin($\frac{π}{2}$+x)cos($\frac{π}{6}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正方形ABCD的边长为1,求图中阴影部分的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.底面为平行四边形的四棱锥P-ABCD中,AB=4,∠ABD=30°,∠BAD=60°,AC∩BD=0,PO⊥面ABCD.
(1)求证AD⊥PB;
(2)Q为边BC上的任意一点,若PQ与面PBD所成的最大角为45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在空间直角坐标系O-xyz中,四面体ABCD的顶点坐标分别是(1,0,1),(1,1,0),(0,1,1)(0,0,0),则该四面体的正视图的面积不可能为(  )
A.$\frac{7}{8}$B.$\frac{{\sqrt{15}}}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知三棱柱ABC-ABC侧棱柱垂直于底面,AB=AC,∠BAC=90°点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面AA′C′C;
(2)设AB=λAA′,当λ为何值时,CN⊥平面A′MN,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设等比数列{an}的前n项和为Sn,公比为q,若an>0,a1=1,S3=7,则q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列结论正确的是(  )
A.“若am2<bm2,则a<b”的逆命题为真命题
B.命题p:?x∈[0,1],ex≥1;命题q:?x∈R,x2+x+1<0,则命题p∨q为真命题
C.“a>b”是“a2>b2”的充分不必要条件
D.若f(x-1)为R上的偶函数,则函数f(x)的图象关于直线x=1对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知曲线y=$\sqrt{4-{x}^{2}}$与x轴的交点为A,B分别由A、B两点向直线y=x作垂线,垂足为C、D,沿直线y=x将平面ACD折起,使平面ACD⊥平面BCD,则四面体ABCD的外接球的表面积为(  )
A.16πB.12πC.D.

查看答案和解析>>

同步练习册答案