分析 (1)求出函数的导数,根据导函数的符号求出函数的单调性即可;(2)根据函数的单调性得到关于x的不等式,解出即可.
解答 解:(1)x>0时,f(x)=ln(x+1),f′(x)=$\frac{1}{x+1}$>0,是增函数,
x≤0时,f(x)=-x2+2x,f′(x)=-2x+2=2(1-x)>0,是增函数,
故f(x)在R递增;
(2)由(1)f(x)在R递增,
故f(2x-1)>f(2-x),
即2x-1>2-x,解得:x>$\frac{1}{3}$,
故不等式的解集是($\frac{1}{3}$,+∞).
点评 本题考查了函数的单调性问题,考查导数的应用以及解不等式问题,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | max{f(n),f(n+1)}>1 | B. | max{f(n),f(n+1)}<1 | C. | max{f(n),f(n+1)}>$\frac{1}{2}$ | D. | max{f(n),f(n+1)}<$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2.5,3) | B. | (2,2.5) | C. | (1,1.5) | D. | (1.5,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q | B. | p∧q | C. | (¬p)∨(¬q) | D. | (¬p)∨q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com