精英家教网 > 高中数学 > 题目详情
12.已知f(x)=$\left\{\begin{array}{l}ln(x+1),x>0\\-{x^2}+2x,x≤0\end{array}$,
(1)用定义法或者导数法判断f(x)的单调性;
(2)求不等式f(2x-1)>f(2-x)的解集.

分析 (1)求出函数的导数,根据导函数的符号求出函数的单调性即可;(2)根据函数的单调性得到关于x的不等式,解出即可.

解答 解:(1)x>0时,f(x)=ln(x+1),f′(x)=$\frac{1}{x+1}$>0,是增函数,
x≤0时,f(x)=-x2+2x,f′(x)=-2x+2=2(1-x)>0,是增函数,
故f(x)在R递增;
(2)由(1)f(x)在R递增,
故f(2x-1)>f(2-x),
即2x-1>2-x,解得:x>$\frac{1}{3}$,
故不等式的解集是($\frac{1}{3}$,+∞).

点评 本题考查了函数的单调性问题,考查导数的应用以及解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow a=(sinx,cos2x),\overrightarrow b=(2\sqrt{3}cosx,-1)$.
(Ⅰ)若$\overrightarrow a⊥\overrightarrow b$,求tan2x的值;
(Ⅱ)求$f(x)=\overrightarrow a•\overrightarrow b$的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.记max{a,b}为a、b中较大者,函数f(x)=x2+px+q的图象与x轴交于两点A(x1,0)、B(x2,0),且x1<x2,若存在整数n,使n<x1<x2<n+1,则(  )
A.max{f(n),f(n+1)}>1B.max{f(n),f(n+1)}<1C.max{f(n),f(n+1)}>$\frac{1}{2}$D.max{f(n),f(n+1)}<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)=($\frac{1}{2}$)x-x+1,若在用二分法求f(x)在(1,3)内的零点近似值时,依次求得f(1)>0,f(3)<0,f(2)<0,f(1.5)<0,则可以判断零点位于区间(  )
A.(2.5,3)B.(2,2.5)C.(1,1.5)D.(1.5,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=∅,则a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是非零向量,
命题p:若 $\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{0}$,$\overrightarrow{b}$•$\overrightarrow{c}$=$\overrightarrow{0}$,则$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{0}$
命题q:若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$ 则$\overrightarrow{a}$∥$\overrightarrow{c}$,则下列命题是假命题的是(  )
A.p∨qB.p∧qC.(¬p)∨(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.以曲线y=cos2x为曲边的曲边形(如图阴影部分)面积为$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sin(ωx+$\frac{π}{4}}$)(ω>0),f(${\frac{π}{6}}$)=f(${\frac{π}{3}}$),且f(x)在(${\frac{π}{2}$,π)上单调递减,则ω=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左顶点A(-2,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:x=my+t(t≠-a)与椭圆C交于不同两点B,C,且满足AB⊥AC.求证:直线l过定点,并求出定点M的坐标;
(Ⅲ)在(Ⅱ)的条件下,过A作AD⊥l,垂足为D,求D的轨迹方程.

查看答案和解析>>

同步练习册答案