精英家教网 > 高中数学 > 题目详情
7.已知曲线f(x)=ax+cos2x在点($\frac{π}{4}$,f($\frac{π}{4}$))处的切线的斜率为-1,则实数a的值为(  )
A.0B.-1C.1D.-3

分析 求出函数的导数,运用导数的几何意义,可得在点($\frac{π}{4}$,f($\frac{π}{4}$))处的切线的斜率,解方程即可得到所求a的值.

解答 解:f(x)=ax+cos2x的导数为f′(x)=a-2sin2x,
可得在点($\frac{π}{4}$,f($\frac{π}{4}$))处的切线的斜率为k=a-2sin$\frac{π}{2}$=a-2=-1,
解得a=1,
故选:C.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确求导是解题的关键,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若${({{x^2}+\frac{a}{x}})^n}$的展开式中,二项式系数和为64,所有项的系数和为729,则a的值为-4或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=cos2x+sin($\frac{π}{2}$+x)的最小值是-$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的公差为2,前n项和为Sn,则$\lim_{n→∞}\frac{S_n}{{{a_n}{a_{n+1}}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若变量x,y满足约束条件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{2x-y-4≤0}\end{array}\right.$,则x2+y2-8x-4y的最小值为4-8$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的单调递减区间为[$\frac{π}{4}+kπ$,$\frac{5π}{8}+kπ$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足a1=1,an+1an+Sn=5,则a2=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC中,角A,B,C所对边分别为a,b,c,且cosA=$\frac{3}{4}$.
(1)若△ABC的周长为30,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=90,求边a的长;
(2)若tanC=3$\sqrt{7}$,且|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=$\sqrt{46}$,求△ABC的面积;
(3)若|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=$\sqrt{46}$,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow a=(-2,1)$,$\overrightarrow b=(1,2)$,则$|{\overrightarrow a-2\overrightarrow b}|$的值是(  )
A.1B.5C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案