精英家教网 > 高中数学 > 题目详情
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,获得单价xi(元)与销量yi(件)的数据资料如下表:
单价x(元) 8 8.2 8.4 8.6 8.8 9
销量y(件) 90 84 83 80 75 68
(Ⅰ)求单价x对销量y的回归直线方程
y
=bx+a,(其中b=-20,a=
.
y
-b
.
x

(Ⅱ)为了使销量达到100件,则单价应定为多少?
考点:线性回归方程
专题:计算题,概率与统计
分析:(Ⅰ)计算平均数,利用b=-20,a=
.
y
-b
.
x
,即可得到回归直线方程;
(Ⅱ)由(Ⅰ)知100=-20x+250,求出x,即可求出单价.
解答: 解:(Ⅰ)
.
x
=
8+8.2+8.4+8.6+8.8+9
6
=8.5
…(2分)
.
y
=
90+84+83+80+75+68
6
=80
…(4分)
a=
.
y
-b
.
x
=80+20×8.5=250
…(6分)
?
y
=-20x+250
…(7分)
(Ⅱ)依题意100=-20x+250,…(10分)
解得:x=7.5(元).                              …(11分)
∴为了使销量达到100件,则单价应定为7.5元.           …(12分)
点评:本题主要考查统计部分的基本知识.考查数据处理能力、抽象概括能力、运算求解能力以及应用意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1=2,an+1=
2an-1
an
,bn=an-1,数列{bn}的前n和为Sn
(1)求数列{bn}的通项公式;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn
(3)求证:对任意的n∈N*
nan+1
2
≤S2n<nan-
1
2
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为圆O的直径,BC与圆O相切于点B,D为圆O上的一点,AD∥OC,连接CD.
求证:CD为圆O的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点O,焦点在x轴上的椭圆C方程为
x2
a2
+
y2
b2
=1,椭圆上的点到焦点距离最大值为3,离心率e=
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆上的点,△AOB面积为
3
,求证:|OA|2+|OB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高二(1)班举行游戏中,有甲、乙两个盒子,这两个盒子中各装有大小、形状完全相同,但颜色不同的8个小球,其中甲盒子中装有6个红球、2个白球,乙盒子中装有7个黄球、1个黑球,现进行摸球游戏,游戏规则:从甲盒子中摸一个红球记4分,摸出一个白球记-1分;从乙盒子中摸出一个黄球记6分,摸出一个黑球记-2分.
(1)如果每次从甲盒子摸出一个球,记下颜色后再放回,求连续从甲盒子中摸出3个球所得总分(3次得分的总和)不少于5分的概率;
(2)设X(单位:分)为分别从甲、乙盒子中各摸一个球所获得的总分,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)试判断能否有99.5%的把握认为“考试成绩与班级有关”?参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
;n=a+b+c+d
P(K2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角△ABC所在平面外一点S,SA=SB=SC,点D为斜边AC的中点.
(1)若AB=BC,求证:AC⊥平面SBD;
(2)求证:SD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α-β)=-
1
3
,cos β=
5
5
,α,β∈(0,π).
(Ⅰ)求tanα的值;    
(Ⅱ)求
sin2α+sin2α
6cos2α+cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数x,y满足
1
y
+
3
x
=5,且3x+4y≥m恒成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案