精英家教网 > 高中数学 > 题目详情
如图,AB为圆O的直径,BC与圆O相切于点B,D为圆O上的一点,AD∥OC,连接CD.
求证:CD为圆O的切线.
考点:圆的切线的判定定理的证明
专题:选作题,立体几何
分析:首先连接OD,由弦AD∥OC,易证得∠COB=∠COD,继而证得△COB≌△COD(SAS),即可得∠ODC=∠OBC,然后由BC与⊙O相切于点B,可得∠ODC=90°,即可证得CD是⊙O的切线.
解答: 证明:连接OD,
∵AD∥OC,
∴∠A=∠COB,∠ADO=∠COD,
∵OA=OD,
∴∠A=∠ADO,
∴∠COB=∠COD,
在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,
∴△COB≌△COD(SAS),
∴∠ODC=∠OBC,
∵BC与⊙O相切于点B,
∴OB⊥BC,
∴∠OBC=90°,
∴∠ODC=90°,
即OD⊥CD,
∴CD是⊙O的切线.
点评:此题考查了切线的判定与性质、全等三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别是a,b,c,若2sinA=sinC,a2,c2,b2成等差数列,则B=(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
3
2
)+
2
x
,g(x)=
1
x2-1
+a;
(1)求函数f(x)的单调区间;
(2)若方程g(x)=ln(x2+1)有4个不同的实根,求a的范围?
(3)是否存在正数b,使得关于x的方程f(x)=blnx有两个不相等的实根?如果存在,求b满足的条件,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某软件公司研发了多款软件,其中A,B,C三种软件供高中生使用,经某高中使用一学年后,该公司调查了这个学校同一年级四个班的使用情况,从各班抽取的样本人数如下表:
班级
人数 3 2 3 4
(1)从这12人中随机抽取2人,求这2人恰好来自同一个班级的概率;
(2)从这12人中,指定甲、乙、丙3人为代表,已知他们每人选择一款软件,其中选A,B两款软件的概率都是
1
6
,且他们选择A,B,C任一款软件都是相互独立的.设这3名学生中选择软件C的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

盒中有6只晶体管,有2只次品,4只合格品,从中任取2次,每次一只;
(1)若取后放回,求取到的2只晶体管中恰有一只合格品的概率是多少?
(2)若取后不放回,求取到的2只晶体管中至少有一只合格概率是多少?
(3)若取后不放回,求取到的2只晶体管中至多有一只合格概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某海域设立东西方向两个观测点A、B,相距
20
3
3
海里.现接到一艘渔船发出的求救讯号,测出该船位于点A北偏东30°,点B北偏西60°的C点.立刻通知位于B观测点南偏西60°且与B点相距16海里的D处的救援船前去营救,若救援船以28海里/小时的航速前往,问需要多长时间到达C处?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+x-6≥0},B={x|x2-6x+5<0},C={x|m-1≤x≤2m}
(Ⅰ)求A∩B,(∁RA)∪B;    
(Ⅱ)若B∩C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,获得单价xi(元)与销量yi(件)的数据资料如下表:
单价x(元) 8 8.2 8.4 8.6 8.8 9
销量y(件) 90 84 83 80 75 68
(Ⅰ)求单价x对销量y的回归直线方程
y
=bx+a,(其中b=-20,a=
.
y
-b
.
x

(Ⅱ)为了使销量达到100件,则单价应定为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1
i-2
的虚部为
 

查看答案和解析>>

同步练习册答案