【题目】如图,在三棱柱中,侧面为棱长为2的菱形,,,.
(1)求证:面面;
(2)求直线与面所成角.
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=3.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求直线PC与平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为纪念“五四运动”100周年,某校团委举办了中国共产主义青年团知识宣讲活动活动结束后,校团委对甲、乙两组各10名团员进行志愿服务次数调查,次数统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以表示.
(1)若甲组服务次数的平均值不小于乙组服务次数的平均值,求图中所有可能的取值;
(2)团委决定对甲、乙两组中服务次数超过15次的团员授予“优秀志愿者”称号设,现从所有“优秀志愿者”里任取3人,求其中乙组的人数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有( )
A.150种B.240种C.300种D.360种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于某设备的使用年限(年)和所支出的维修费(万元)有如下统计资料:
若由资料知,对呈线性相关关系.
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)估计使用年限为10年时,维修费用约是多少?(精确到两位小数);
(3)计算第2年和第6年的残差.
附:回归直线的斜率和截距的最小二乘估计分别为;.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车站每天上午发出两班客车,每班客车发车时刻和发车概率如下:第一班车:在8:00,8:20,8:40发车的概率分别为,,;第二班车:在9:00,9:20,9:40发车的概率分别为,,.两班车发车时刻是相互独立的,一位旅客8:10到达车站乘车.求:
(1)该旅客乘第一班车的概率;
(2)该旅客候车时间(单位:分钟)的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的准线与轴交于椭圆的右焦点,为椭圆的左焦点,椭圆的利息率为,抛物线与椭圆交于轴上方一点,连接并延长其交抛物线于点,为抛物线上一动点,且在,之间移动.
(1)当取最小值时,求的值;
(2)若的边长恰好是三个连续的自然数,当的面积取最大值时,求面积最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某综艺节目为比较甲、乙两名选手的各项能力(指标值满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,图中点A表示甲的创造力指标值为4,点B表示乙的空间能力指标值为3,则下面叙述正确的是
A. 乙的记忆能力优于甲的记忆能力
B. 乙的创造力优于观察能力
C. 甲的六大能力整体水平优于乙
D. 甲的六大能力中记忆能力最差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着中美贸易战的不断升级,越来越多的国内科技巨头加大了科技研发投入的力度.中华技术有限公司拟对“麒麟”手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入x(亿元与科技升级直接收益y(亿元)的数据统计如下:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
x | 2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 |
y | 13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
当时,建立了y与x的两个回归模型:模型①:;模型②:;当时,确定y与x满足的线性回归方程为.
(1)根据下列表格中的数据,比较当时模型①、②的相关指数的大小,并选择拟合精度更高、更可靠的模型,预测对“麒麟”手机芯片科技升级的投入为17亿元时的直接收益.
回归模型 | 模型① | 模型② |
回归方程 | ||
182.4 | 79.2 |
(附:刻画回归效果的相关指数,)
(2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,比较科技升级投入17亿元与20亿元时公司实际收益的大小.
(附:用最小二乘法求线性回归方程的系数:,)
(3)科技升级后,“麒麟”芯片的效率X大幅提高,经实际试验得X大致服从正态分布.公司对科技升级团队的奖励方案如下:若芯片的效率不超过50%,不予奖励:若芯片的效率超过50%,但不超过53%,每部芯片奖励2元;若芯片的效率超过53%,每部芯片奖励4元记为每部芯片获得的奖励,求(精确到0.01).
(附:若随机变量,则,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com