精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,侧面为棱长为2的菱形,

1)求证:面

2)求直线与面所成角.

【答案】1)见解析(2

【解析】

1)连结于点,连结,通过菱形的性质得出,得出为等边三角形,根据三边关系得出,则,而,根据线面垂直的判定定理得出平面,而平面,从而可证出平面平面

2)由面面垂直的性质得出,则即为与面所成角,通过几何法求得,即可求出直线与面所成角.

解:(1)证明:连结于点,连结

因为为菱形,

所以

为等边三角形,即可得

所以在中,

,即

又知

平面平面

所以平面平面

即平面平面.

2)由(1)知平面平面

因为,平面平面

所以

即为与面所成角,

中,

所以直线与面所成角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥PABCD中,PC⊥底面ABCDPCCD2EAB的中点,底面四边形ABCD满足∠ADC=∠DCB90°AD1BC3

)求证:平面PDE⊥平面PAC

)求直线PC与平面PDE所成角的正弦值;

)求二面角DPEB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为纪念五四运动”100周年,某校团委举办了中国共产主义青年团知识宣讲活动活动结束后,校团委对甲、乙两组各10名团员进行志愿服务次数调查,次数统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以表示.

1)若甲组服务次数的平均值不小于乙组服务次数的平均值,求图中所有可能的取值;

2)团委决定对甲、乙两组中服务次数超过15次的团员授予优秀志愿者称号设,现从所有优秀志愿者里任取3人,求其中乙组的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20194月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有(

A.150B.240C.300D.360

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于某设备的使用年限(年)和所支出的维修费(万元)有如下统计资料:

若由资料知,呈线性相关关系.

1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)估计使用年限为10年时,维修费用约是多少?(精确到两位小数);

3)计算第2年和第6年的残差.

附:回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车站每天上午发出两班客车,每班客车发车时刻和发车概率如下:第一班车:在8:008:208:40发车的概率分别为;第二班车:在9:009:209:40发车的概率分别为.两班车发车时刻是相互独立的,一位旅客8:10到达车站乘车.求:

(1)该旅客乘第一班车的概率;

(2)该旅客候车时间(单位:分钟)的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线的准线轴交于椭圆的右焦点为椭圆的左焦点,椭圆的利息率为,抛物线与椭圆交于轴上方一点,连接并延长其交抛物线于点为抛物线上一动点,且在之间移动.

1)当取最小值时,求的值;

2)若的边长恰好是三个连续的自然数,当的面积取最大值时,求面积最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某综艺节目为比较甲、乙两名选手的各项能力(指标值满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,图中点A表示甲的创造力指标值为4,点B表示乙的空间能力指标值为3,则下面叙述正确的是

A. 乙的记忆能力优于甲的记忆能力

B. 乙的创造力优于观察能力

C. 甲的六大能力整体水平优于乙

D. 甲的六大能力中记忆能力最差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着中美贸易战的不断升级,越来越多的国内科技巨头加大了科技研发投入的力度.中华技术有限公司拟对麒麟手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入x(亿元与科技升级直接收益y(亿元)的数据统计如下:

序号

1

2

3

4

5

6

7

8

9

10

11

12

x

2

3

4

6

8

10

13

21

22

23

24

25

y

13

22

31

42

50

56

58

68.5

68

67.5

66

66

时,建立了yx的两个回归模型:模型①:;模型②:;当时,确定yx满足的线性回归方程为

1)根据下列表格中的数据,比较当时模型①、②的相关指数的大小,并选择拟合精度更高、更可靠的模型,预测对麒麟手机芯片科技升级的投入为17亿元时的直接收益.

回归模型

模型①

模型②

回归方程

182.4

79.2

(附:刻画回归效果的相关指数

2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,比较科技升级投入17亿元与20亿元时公司实际收益的大小.

(附:用最小二乘法求线性回归方程的系数:

3)科技升级后,麒麟芯片的效率X大幅提高,经实际试验得X大致服从正态分布.公司对科技升级团队的奖励方案如下:若芯片的效率不超过50%,不予奖励:若芯片的效率超过50%,但不超过53%,每部芯片奖励2元;若芯片的效率超过53%,每部芯片奖励4元记为每部芯片获得的奖励,求(精确到0.01).

(附:若随机变量,则

查看答案和解析>>

同步练习册答案