精英家教网 > 高中数学 > 题目详情
5.一个几何体的三视图如图所示,则该几何体可以是(  )
A.棱锥B.棱台C.圆锥D.棱柱

分析 直接利用三视图判断直观图即可.

解答 解:由题意不难判断几何体是三棱柱,
故选:D.

点评 本题考查空间几何体的三视图与直观图的关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x>1},集合B={x|3x-4≤0},满足如图所示的阴影部分的集合是(  )
A.{x|x>1}B.{x|1<x≤$\frac{4}{3}$}C.{x|x≤1}D.{x|x>$\frac{4}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果f(x)的定义域为R,f(x+2)=f(x+1)-f(x),若f(1)=lg3-lg2,f(2)=lg3+lg5,则f(3)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:实数t满足t2-5at+4a2<0(其中a≠0),命题q:方程$\frac{{x}^{2}}{t-2}+\frac{{y}^{2}}{t-6}=1$表示双曲线
(1)若a=1,且p∧q为真命题,求实数t的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)在定义域内可导,且图象如图所示,则此导函数y=f′(x)的图象可知为图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则异面直线AC1与BB1所成的角的余弦值为(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.己知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{3}}{3}$,且它的一个焦点F1的坐标为(0,1)
(Ⅰ)试求椭圆的标准方程:
(Ⅱ)设过焦点F1的直线与椭圆交于A,B两点,N是椭圆上不同于A、B的动点,试求△NAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到焦点距离的最大值为$\sqrt{2}$+1,离心率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C交于A,B两点,设P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(O为坐标原点),当|$\overrightarrow{PA}$-$\overrightarrow{PB}$|<$\frac{2\sqrt{5}}{3}$时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(4,2),且离心率为$\frac{\sqrt{2}}{2}$,点R(x0,y0)是椭圆上的任意一点,从原点O引圆R:(x-x02+(y-y02=8的两条切线分别交椭圆C于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:OP2+OQ2的值为定值.

查看答案和解析>>

同步练习册答案