精英家教网 > 高中数学 > 题目详情
在△ABC中,cosC=
3
10
,设向量
x
=(2sinB,-
3
),
y
=(cos2B,1-2sin2
B
2
),且
x
y
,求sin(B-A)的值.
考点:两角和与差的正弦函数,平行向量与共线向量
专题:三角函数的求值
分析:由题意易得sin(A+B)和cos(A+B)的值,再由向量平行可得sin2B=
3
2
,cos2B=
1
2
,代入sin(B-A)=sin[2B-(A+B)]=sin2Bcos(A+B)-cos2Bsin(A+B),计算可得.
解答: 解:∵在△ABC中,cosC=
3
10

∴sin(A+B)=sinC=
1-cos2C
=
91
10

∴cos(A+B)=-cosC=-
3
10

又∵
x
=(2sinB,-
3
),
y
=(cos2B,1-2sin2
B
2
),且
x
y

∴2sinB(1-2sin2
B
2
)=-
3
cos2B,
∴-2sinBcosB=-
3
cos2B,
∴sin2B=
3
cos2B,即tan2B=
sin2B
cos2B
=
3

∴2B=
π
3
,∴sin2B=
3
2
,cos2B=
1
2

∴sin(B-A)=sin[2B-(A+B)]
=sin2Bcos(A+B)-cos2Bsin(A+B)
=
3
2
×(-
3
10
)-
1
2
×
91
10

=-
3
3
+
91
20
点评:本题考查两角和与差的三角函数公式,涉及向量的平行关系,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线8y-x2=0的焦点F到直线l:x-y-1=0的距离是(  )
A、
5
2
2
B、
2
C、
2
2
D、
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如表是一个由正数组成的数表,数表中各行依次成等差数列,各列依次成等比数列,且公比都相等,已知a1,1=1,a2,3=6,a3,2=8.
a1,1a1,2a1,3a1,4
a2,1a2,2a2,3a2,4
a3,1a3,2a3,3a3,4
a4,1a4,2a4,3a4,4
(1)求数列{an,2}的通项公式;
(2)设bn=
a1,n
an,2
+(-1)na1,n,n=1,2,3,…,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知k∈R,若过定点A的直线x+ky=0与过定点B的直线kx-y-3k+1=0交于点P,则|
PA
|•|
PB
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a:b:c=1:3:3,求
2sinA-sinB
sinC

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中向量
a
=
AB
+
AC
b
=3
AB
+8
AC
+
BC
c
=4
CB
+
BA
,则下列结论一定成立的是(  )
A、向量
a
+
c
一定与向量
b
平行
B、向量
b
+
c
一定与向量
a
平行
C、向量
a
+
b
一定与向量
c
平行
D、向量
a
-
b
一定与向量
c
平行

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知定点A(-1,0),动点C在射线y=-x(x≤0)上运动,动点D在射线y=x(x≥0)上运动,且满足
AC
AD
=0

(1)是否存在点C,使|
CD
|=
10
,若存在,求出C点坐标;若不存在,请说明理由;
(2)求证∠ACD是为定值,且求出∠ACD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中
a
=(2cosx,1),
b
=(cosx,-
3
sin2x).
(1)求函数的单调区间;
(2)若x∈(-
π
4
,0),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+1<2x,命题q:不等式x2-mx-1>0恒成立,下列说法正确的是(  )
A、¬p是假命题
B、q是真命题
C、p∨q是假命题
D、p∧q是真命题

查看答案和解析>>

同步练习册答案