精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=sin$\frac{πx}{2}$,任取t∈R,若函数f(x)在区间[t,t+2]上的最大值为Mt,最小值为mt,记h(t)=Mt-mt
(1)求h(0)的值,并求出方程h(t)=2的根;
(2)当t∈[-2,2]时,求函数h(t)的解析式.

分析 (1)由题意可得函数的周期为4,由h(0)=M0-m0 求得结果.方程h(t)=2,即Mt-mt=2,即 Mt=1,mt=-1,结合f(x)的图象求得t的值.
(2)当t∈[-2,2]时,分类讨论分别求得Mt和mt的值,可得h(t)=Mt-mt的值.
g(t+4)=Mt-mt=g(t),然后探索-2≤t≤0的函数f(x)的最值,以及g(t)的解析式,即可得到结论.

解答 解:(1)函数f(x)=sin$\frac{πx}{2}$,它的最小正周期为$\frac{2π}{\frac{π}{2}}$=4,画出函数f(x)的部图象,
如右图,任取t∈R,若函数f(x)在区间[t,t+2]上的最大值为Mt,最小值为mt
记h(t)=Mt-mt ,则h(0)=M0-m0=1-0=1.
方程h(t)=2,即Mt-mt=2,即 Mt=1,mt=-1,此时,t=2k+1,k∈Z.
(2)当t∈[-2,2]时,
若-2≤t<-1,Mt=sin($\frac{t+2}{2}π$)=-sin$\frac{π}{2}$t,mt=-1,g(t)=Mt-mt =-sin$\frac{π}{2}$t+1.
若-1≤t<0,Mt=1,mt=sin$\frac{π}{2}$t,g(t)=Mt-mt =1-sin$\frac{π}{2}$t,
若0≤t<1,Mt=1,mt=sin($\frac{t+2}{2}π$)=-sin$\frac{π}{2}$t,g(t)=Mt-mt =1+sin$\frac{π}{2}$t.
若1≤t≤2,Mt=sin$\frac{π}{2}$t,mt=-1,g(t)=Mt-mt =sin$\frac{π}{2}$t+1,
综上可得,函数h(t)=$\left\{\begin{array}{l}{1-sin\frac{π}{2}t,t∈[-2,0)}\\{1+sin\frac{π}{2}t,t∈[0,2]}\end{array}\right.$.

点评 本题主要考查函数的周期性以及应用,根据三角函数的图象和性质写出函数式,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图所示,在四面体S-ABC中,SA=SB=SC=1,∠ASB=∠ASC=60°,∠BSC=90°,D是BC的中点.求证:
(1)SD⊥平面ABC;
(2)AD⊥SC;
(3)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆C1:x2+y2+ax=0与圆C2:x2+y2+2ax+ytanθ=0都关于直线2x-y-1=0对称,则sinθcosθ=(  )
A.$\frac{2}{5}$B.-$\frac{6}{37}$C.-$\frac{2}{5}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知两点A(-3,$\sqrt{3}$),B($\sqrt{3}$,-1),则直线AB的倾斜角θ等于(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5}{6}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数f(x)=(tanx-1)(1+cos2x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知3$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≤0在x∈[-$\frac{5π}{6}$,$\frac{π}{6}$]上有解但不恒成立,则实数m的取值范围是(  )
A.[-$\sqrt{3}$,+∞)B.(-∞,$\sqrt{3}$]C.[-$\sqrt{3}$,3)D.[-$\sqrt{3}$,+$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则$\frac{y}{x-3}$的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2+3x-4≤0},B={x|x=2n+1,n∈Z},则集合A∩B中元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足|$\overrightarrow{M{F}_{1}}$|=3|$\overrightarrow{M{F}_{2}}$|,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

同步练习册答案