精英家教网 > 高中数学 > 题目详情
19.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则B∩∁UA=(  )
A.{2}B.{4,6}C.{1,3,5}D.{4,6,7,8}

分析 由题意和补集的运算求出∁UA,由交集的运算求出B∩∁UA.

解答 解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},
∴∁UA={4,6,7,8},
又B={2,4,6},则B∩∁UA={4,6},
故选B.

点评 本题考查交、并、补集的混合运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”
B.命题“若$?{x_0}∈R,{x_0}^2>1$”的否定是“?x∈R,x2<1”
C.命题“若x=y,则cosx=cosy”的逆否命题为假命题
D.命题“若x=y,则cosx=cosy”的逆命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{m}-{y^2}=1$的虚轴长是实轴长的2倍,则m=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在映射f下,(x,y)的象是(x+y,x-y),则元素(3,1)的原象为(  )
A.(1,2)B.(2,1)C.(-1,2)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin(3ωx+$\frac{π}{3}$),其中ω>0
(1)若f(x+θ)是周期为2π的偶函数,求ω及θ的值;
(2)若f(x)在(0,$\frac{π}{3}$]上是增函数,求ω的最大值;
(3)当ω=$\frac{2}{3}$时,将函数f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为$\sqrt{3}$,又椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,左右顶点分别为P,Q.
(1)求椭圆C的方程;
(2)过点D(m,0)(m∈(-2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;
(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在侧棱长为$2\sqrt{3}$的正三棱锥S-ABC中,∠ASB=∠BSC=∠CSA=40°,过A作截面AMN,交SB于M,交SC于N,则截面AMN周长的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线E:y2=4x的焦点是F,过点F的直线l与抛物线E相交于A,B两点,O为原点.
(Ⅰ)若直线l的斜率为1,求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ)设$\overrightarrow{FB}$=t$\overrightarrow{AF}$,若t∈[2,4],求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案