分析 (I)在△ADC中,使用正弦定理解出DC;
(II)在△ABC中,使用正弦定理解出BC,代入三角形的面积公式计算.
解答 解:(Ⅰ)在△ADC中,∠ADC=360°-90°-120°-θ=150°-θ,
由正弦定理可得$\frac{DC}{sin∠DAC}$=$\frac{AC}{sin∠ADC}$,即$\frac{DC}{sin30°}$=$\frac{2}{sin(150°-θ)}$,
于是:DC=$\frac{1}{sin(150°-θ)}$.
(Ⅱ)在△ABC中,由正弦定理得$\frac{AC}{sinθ}$=$\frac{BC}{sin60°}$,即BC=$\frac{\sqrt{3}}{sinθ}$,
由(Ⅰ)知:DC=$\frac{1}{sin(150°-θ)}$,
∴S=$\frac{1}{2}BC×CD×sin120°$=$\frac{3}{4sinθ•sin(150°-θ)}$=$\frac{3}{2sinθcosθ+2\sqrt{3}sin^2θ}$=$\frac{3}{\sqrt{3}+2sin(2θ-60°)}$.
故θ=75°时,S取得最小值6-3$\sqrt{3}$.
点评 本题考查了正弦定理在解三角形中的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,3) | B. | (-6,0) | C. | [-2,3] | D. | [-6,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com