精英家教网 > 高中数学 > 题目详情
5.抛物线x2=-14y的焦点坐标是(0,-$\frac{7}{2}$),准线方程是y=$\frac{7}{2}$.

分析 直接利用抛物线方程求出焦点坐标与准线方程即可.

解答 解:抛物线x2=-14y的焦点坐标是:(0,-$\frac{7}{2}$),准线方程是:y=$\frac{7}{2}$.
故答案为:(0,-$\frac{7}{2}$);y=$\frac{7}{2}$.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在如图所示的四边形ABCD中,∠BAD=90°,∠BCD=120°,∠BAC=60°,AC=2,记∠ABC=θ.
(Ⅰ)求用含θ的代数式表示DC;
(Ⅱ)求△BCD面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四种说法中,正确的个数有(  )
①命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得${x_0}^2-3{x_0}-2≤0$”;
②?m∈R,使$f(x)=m{x^{{m^2}+2m}}$是幂函数,且在(0,+∞)上是单调递增;
③不过原点(0,0)的直线方程都可以表示成$\frac{x}{a}+\frac{y}{b}=1$;
④回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\widehat{y}$=1.23x+0.08.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知不等式组$\left\{\begin{array}{l}3x+4y-10≥0\\ x≤4\\ y≤3\end{array}\right.$表示区域D,过区域D中任意一点P作圆x2+y2=1的两条切线且切点分别为A,B,当∠PAB最小时,cos∠PAB=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市小型机动车驾照“科二”考试共有5项考察项目,分别记作①,②,③,④,⑤
(Ⅰ)某教练将所带10名学员“科二”模拟考试成绩进行统计(如表所示),并打算从恰有2项成绩不合格的学员中任意抽出2人进行补测(只侧不合格项目),求补测项目种类不超过3项的概率.
项目/学号编号
(1)TTT
(2)TTT
(3)TTTT
(4)TTT
(5)TTTT
(6)TTT
(7)TTTT
(8)TTTTT
(9)TTT
(10)TTTTT
注:“T”表示合格,空白表示不合格
(Ⅱ)如图,某次模拟演练中,教练要求学员甲倒车并转向90°,在车边缘不压射线AC与射线BD的前提下,将汽车驶入指定的停车位.根据经验,学员甲转向90°后可使车尾边缘完全落在线段CD上,且位于CD内各处的机会相等.若CA=BD=0.3m,AB=2.4m,汽车宽度为1.8m,求学员甲能按教练要求完成任务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列-3,0,3,6…的第13项是33.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设点(x,y)在平面区域E内,记事件A“对任意(x,y)∈E,有2x-y≥1”,则满足事件A发生的概率P(A)=1的平面区域E可以是(  )
A.$\left\{\begin{array}{l}{x≤2}\\{x+y≥0}\end{array}\right.$B.$\left\{\begin{array}{l}{x≥2}\\{x+y≤0}\end{array}\right.$C.$\left\{\begin{array}{l}{x≥2}\\{x-y≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{x≤2}\\{x-y≥0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系内,以原点O为顶点,x轴非负半轴为始边,任作一角,该角的终边OA落在第一象限的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知b+c=2a,试推断是否存在p,使$\frac{1+cosB}{sinB}$+$\frac{1+cosC}{sinC}$=p•$\frac{sinA}{1-cosA}$成立?若存在,求p的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案