精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,且有Sn=1-an(n∈N*),点(an,bn)在直线y=nx上.
(1)求数列{an}的通项公式;
(2)求Tn
(3)试比较Tn和2-$\frac{{n}^{2}}{{2}^{n}}$的大小,并加以证明.

分析 (1)利用递推式与等比数列的通项公式可得an
(2)由点(an,bn)在直线y=nx上,可得bn=nan.bn=$n•(\frac{1}{2})^{n}$.利用“错位相减法”、等比数列的前n项和公式即可得出;
(3)作差比较大小即可得出.

解答 解:(1)当n=1时,a1=S1=1-a1,解得:${a}_{1}=\frac{1}{2}$,
当n≥2时,an=Sn-Sn-1=(1-an)-(1-an-1),
化为2an=an-1
∴数列{an}是以${a}_{1}=\frac{1}{2}$为首项,$\frac{1}{2}$为公比的等比数列.
∴${a}_{n}=(\frac{1}{2})^{n}$(n∈N*).
(2)∵点(an,bn)在直线y=nx上,
∴bn=nan
∴bn=$n•(\frac{1}{2})^{n}$.
∴Tn=$\frac{1}{2}+2•(\frac{1}{2})^{2}+3×(\frac{1}{2})^{3}$+…+$n•(\frac{1}{2})^{n}$,
$\frac{1}{2}{T}_{n}$=$(\frac{1}{2})^{2}$+2$•(\frac{1}{2})^{3}$+…+(n-1)$•(\frac{1}{2})^{n}+n•(\frac{1}{2})^{n+1}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+(\frac{1}{2})^{2}+(\frac{1}{2})^{3}$+…+$(\frac{1}{2})^{n}$-n$•(\frac{1}{2})^{n+1}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n$•(\frac{1}{2})^{n+1}$=$1-\frac{2+n}{{2}^{n+1}}$,
∴Tn=$2-\frac{2+n}{{2}^{n}}$.
(3)令Bn=2-$\frac{{n}^{2}}{{2}^{n}}$,则Tn-Bn=$\frac{{n}^{2}}{{2}^{n}}-\frac{n+2}{{2}^{n}}$=$\frac{(n-2)(n+1)}{{2}^{n}}$.
当n=1时,T1<B1
当n=2时,T2=B2
当n≥3时,Tn>Bn

点评 本题考查了递推式的应用、等比数列的定义及其前n项和公式、“裂项求和”、“作差法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列结论正确的是(  )
A.“若am2<bm2,则a<b”的逆命题为真命题
B.命题p:?x∈[0,1],ex≥1;命题q:?x∈R,x2+x+1<0,则命题p∨q为真命题
C.“a>b”是“a2>b2”的充分不必要条件
D.若f(x-1)为R上的偶函数,则函数f(x)的图象关于直线x=1对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知曲线y=$\sqrt{4-{x}^{2}}$与x轴的交点为A,B分别由A、B两点向直线y=x作垂线,垂足为C、D,沿直线y=x将平面ACD折起,使平面ACD⊥平面BCD,则四面体ABCD的外接球的表面积为(  )
A.16πB.12πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C1:(x+2)2+y2=$\frac{81}{16}$,圆C2:(x-2)2+y2=$\frac{1}{16}$,动圆Q与圆C1、圆C2均外切.
(1)求动圆圆心Q的轨迹方程;
(2)在x轴负半轴上是否存在定点M使得∠QC2M=2∠QMC2?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x0∈R,x02+2x0+2≤0”的否定是(  )
A.?x∈R,x2+2x+2>0B.?x∈R,x2+2x+2≥0
C.?x0∈R,x02+2x0+2<0D.?x∈R,x02+2x0+2>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1,在边长为12的正方形AA′A1′A1中,BB1∥CC1∥AA1,且AB=3,且BC=4,AA1′分别交BB1,CC1于点P,Q,将该正方形沿BB1,CC1折叠,使得A′A1′与AA1重合,构成图2所示的三棱柱ABC-A1B1C1,在图2中.
(Ⅰ)求证:AB⊥PQ;
(Ⅱ)求直线BC与平面APQ所成角的正弦值;
(Ⅲ)在底边AC上有一点M,使得BM∥平面APQ,求$\frac{AM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤k}\end{array}\right.$,z=x+y,若z的最大值为12,则k=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设等差数列{an}的前n项和为Sn,若S3=2,S9=12,则数列{an}的公差d=$\frac{2}{9}$;S12=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设抛物线y2=4x的焦点为F,P为抛物线上一点(在第一象限内),若以PF为直径的圆的圆心在直线x+y=2上,则此圆的半径为1.

查看答案和解析>>

同步练习册答案