分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).![]()
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.
此时z=x+y=12
由$\left\{\begin{array}{l}{x+y=12}\\{x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$,即A(6,6),
同时A也在y=k上,
∴k=6.
故答案为:6
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{2}$ | B. | 向左平移$\frac{π}{2}$个单位 | ||
| C. | 向右平移π个单位 | D. | 向左平移π个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 18 | C. | 21 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com