精英家教网 > 高中数学 > 题目详情
若0≤x≤3,则y=x2-4x+3(  )
A、有最小值0,最大值3
B、有最小值-1,最大值0
C、有最小值-1,最大值1
D、有最小值-1,最大值3
考点:二次函数的性质
专题:函数的性质及应用
分析:先将解析式配方,再判断出函数在区间上的单调性,利用单调性求出函数的最大值、最小值.
解答: 解:由题意得,y=x2-4x+3=(x-2)2-1,
所以函数在x∈[0,2]单调递减,在x∈[2,3]单调递增,
所以fmin(x)=f(2)=-1,fmax(x)=f(0)=3.
故选:D.
点评:本题考查二次函数的单调性、最值,一般利用配方法化简解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PA⊥底面ABCD,PA=2AB,则四棱锥P-ABCD外接球的表面积为(  )
A、24πB、8π
C、6πD、36π

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=ax2+(b+1)x+b-2,(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.
(1)当a=2,b=-2时,求f(x)的不动点;
(2)当a=2时,函数f(x)在(-2,3)内有两个不同的不动点,求实数b的取值范围;
(3)若对于任意实数b,函数f(x)恒有两个不相同的不动点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-3)2+(y-4)2=1和两点A(1-m,0),B(1+m,0),m>0,若圆C上存在点P,使得∠APB=90°,则m的最大值为(  )
A、7B、6C、5D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x+1,若存在实数t,使得不等式f(x+t)≤x对任意的x∈[1,m](m>1)恒成立,则实数m的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=[2sin(x+
π
3
)+sinx]cosx-
3
sin2x.
(1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最小值;
(2)若函数y=mf(x)-2在x∈[0,
12
]存在零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件:
x+y-5≥0
x-y+1≤0
,则z=x+2y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x,y满足x+ty=1,t是给定的正实数.若
1
x
+
1
y
的最小值为16,则正实数t的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合{3,|x|,x}={-2,2,y},则(
1
2
)x+2y
=
 

查看答案和解析>>

同步练习册答案